Abstract

This paper focuses on free vibration of hemi-ellipsoidal shells with the consideration of the bending rigidity and nonlinear terms in strain energy. The appropriate form of the energy functional is formulated based on the principle of virtual work and the fundamental form of surfaces. Natural frequencies and their corresponding mode shapes are determined using the modified direct iteration method. The obtained results, which show a close agreement with previous research, are compared with those obtained based on the membrane theory. The effect of the support condition, thickness, size ratio, and volume constraint condition on frequency parameters and mode shapes is demonstrated. With the bending rigidity, shell thickness has a significant impact on the frequency, especially in higher vibration modes and in shells with a considerable thickness but the frequency parameter converges to that determined by using the membrane theory while the reference radius-to-thickness ratio is increasing. In addition, accounting for the bending rigidity solves the issue of determining natural frequencies and mode shapes of the shells using the membrane theory without the volume constraint condition. The obtained results also indicate that the free vibration analysis with bending is essential for the hemi-ellipsoidal shell with a base radius-to-thickness ratio of less than 100, which gives over 2.84% difference compared with that of the shell derived by membrane theory, and this allows engineers to perform the analysis in more applications.

References

1.
Krivoshapko
,
S. N.
,
2007
, “
Research on General and Axisymmetric Ellipsoidal Shells Used as Domes, Pressure Vessels, and Tanks
,”
ASME Appl. Mech. Rev.
,
60
(
6
), pp.
336
355
.
2.
Jha
,
A. K.
,
Inman
,
D. J.
, and
Plaut
,
R. H.
,
2002
, “
Free Vibration Analysis of an Inflated Toroidal Shell
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
387
396
.
3.
Li
,
K.
,
Zheng
,
J.
,
Liu
,
S.
,
Ge
,
H.
,
Sun
,
G.
,
Zhang
,
Z.
,
Gu
,
C.
, and
Xu
,
P.
,
2019
, “
Buckling Behavior of Large-Scale Thin-Walled Ellipsoidal Head Under Internal Pressure
,”
Thin Walled Struct.
,
141
, pp.
260
274
.
4.
Karamanos
,
S. A.
,
Patkas
,
L. A.
, and
Platyrrachos
,
M. A.
,
2006
, “
Sloshing Effects on the Seismic Design of Horizontal-Cylindrical and Spherical Industrial Vessels
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
328
340
.
5.
Shariati
,
S. K.
, and
Mogadas
,
S. M.
,
2011
, “
Vibration Analysis of Submerged Submarine Pressure Hull
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011013
.
6.
Yazdi
,
M. S.
,
Rostami
,
S. A. L.
, and
Kolahdooz
,
A.
,
2016
, “
Optimization of Geometrical Parameters in a Specific Composite Lattice Structure Using Neural Networks and ABC Algorithm
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1763
1771
.
7.
Altenbach
,
H.
, and
Eremeyev
,
V.
,
2016
, “Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications,”
Shell-Like Structures
,
H.
Altenbach
, and
V.
Eremeyev
, eds.,
Springer
,
Cham
, pp.
1
62
.
8.
Tangbanjongkij
,
C.
,
Chucheepsakul
,
S.
, and
Jiammeepreecha
,
W.
,
2019
, “
Large Displacement Analysis of Ellipsoidal Pressure Vessel Heads Using the Fundamental of Differential Geometry
,”
Int. J. Press. Vessels Pip.
,
172
, pp.
337
347
.
9.
Tangbanjongkij
,
C.
,
Chucheepsakul
,
S.
, and
Jiammeepreecha
,
W.
,
2020
, “
Analytical and Numerical Analyses for a Variety of Submerged Hemi-Ellipsoidal Shells
,”
ASCE J. Eng. Mech.
,
146
(
7
), p.
04020066
.
10.
Jiammeepreecha
,
W.
, and
Chucheepsakul
,
S.
,
2017
, “
Nonlinear Free Vibration Analysis of a Toroidal Pressure Vessel Under Constrained Volume Condition
,”
Int. J. Struct. Stab. Dyn.
,
19
(
10
), p.
19501189
.
11.
Lamb
,
H. M. A.
,
1882
, “
On the Vibrations of a Spherical Shell
,”
Proc. London Math. Soc.
,
S1-14
(
1
), pp.
50
56
.
12.
Love
,
A. E. H.
,
1888
, “
The Small Free Vibrations and Deformations of a Thin Elastic Shell
,”
Philos. Trans. R. Soc., A
,
179
, pp.
491
546
.
13.
Kalnins
,
A.
,
1964
, “
Effect of Bending on Vibrations of Spherical Shells
,”
J. Acoust. Soc. Am.
,
36
(
1
), pp.
74
81
.
14.
Kalnins
,
A.
, and
Biricikoglu
,
V.
,
1972
, “
Theory of Vibration of Initially Stressed Shells
,”
J. Acoust. Soc. Am.
,
51
(
5B
), pp.
1697
1704
.
15.
Jiammeepreecha
,
W.
, and
Chucheepsakul
,
S.
,
2017
, “
Nonlinear Axisymmetric Free Vibration Analysis of Liquid-Filled Spherical Shell With Volume Constraint
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051016
.
16.
Ross
,
E. W.
, Jr.
,
1965
, “
Natural Frequencies and Mode Shapes for Axisymmetric Vibration of Deep Spherical Shells
,”
ASME J. Appl. Mech.
,
32
(
3
), pp.
553
561
.
17.
Ross
, Jr.
E. W.
, and
Matthews
,
W. T.
,
1967
, “
Frequencies and Mode Shapes for Axisymmetric Vibration of Shells
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
73
80
.
18.
Kunieda
,
H.
,
1984
, “
Flexural Axisymmetric Free Vibrations of a Spherical Dome: Exact Results and Approximate Solutions
,”
J. Sound Vib.
,
92
(
1
), pp.
1
10
.
19.
Singh
,
A. V.
, and
Mirza
,
S.
,
1985
, “
Asymmetric Modes and Associated Eigenvalues for Spherical Shells
,”
ASME J. Pressure Vessel Technol.
,
107
(
1
), pp.
77
82
.
20.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-linear Vibrations of Shells: A Literature Review From 2003 to 2013
,”
Int. J. Non Linear Mech.
,
58
, pp.
233
257
.
21.
Meish
,
V. F.
,
2005
, “
Numerical Solution of Dynamic Problems for Reinforced Ellipsoidal Shells Under Nonstationary Loads
,”
Int. Appl. Mech.
,
41
(
4
), pp.
386
391
.
22.
Meish
,
V. F.
, and
Maiborodina
,
N. V.
,
2008
, “
Nonaxisymmetric Vibrations of Ellipsoidal Shells Under Nonstationary Distributed Loads
,”
Int. Appl. Mech.
,
44
(
9
), pp.
1015
1024
.
23.
Ventsel
,
E. S.
,
Naumenko
,
V.
,
Strelnikova
,
E.
, and
Yeseleva
,
E.
,
2010
, “
Free Vibrations of Shells of Revolution Filled With a Fluid
,”
Eng. Anal. Boundary Elem.
,
34
(
10
), pp.
856
862
.
24.
Chernobryvko
,
M. V.
, and
Avramov
,
K. V.
,
2016
, “
Natural Vibrations of Parabolic Shells
,”
J. Math. Sci.
,
217
(
2
), pp.
229
238
.
25.
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
Vibrational Properties of a Hemispherical Shell With Its Inner Fluid Pressure: An Inverse Method for Noninvasive Intracranial Pressure Monitoring
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041002
.
26.
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
An Experimental–Numerical Modal Analysis for the Study of Shell-Fluid Interactions in a Clamped Hemispherical Shell
,”
Appl. Acoust.
,
152
(
5
), pp.
110
117
.
27.
Breslavsky
,
I. D.
, and
Amabili
,
M.
,
2018
, “
Nonlinear Vibrations of a Circular Cylindrical Shell With Multiple Internal Resonances Under Multi-Harmonic Excitation
,”
Nonlinear Dyn.
,
93
(
1
), pp.
53
62
.
28.
Amabili
,
M.
,
Balasubramanian
,
P.
, and
Ferrari
,
G.
,
2016
, “
Travelling Wave and Non-Stationary Response in Nonlinear Vibrations of Water-Filled Circular Cylindrical Shells: Experiments and Simulations
,”
J. Sound Vib.
,
381
, pp.
220
245
.
29.
Zippo
,
A.
,
Barbieri
,
M.
,
Iarriccio
,
G.
, and
Pellicano
,
F.
,
2020
, “
Nonlinear Vibrations of Circular Cylindrical Shells With Thermal Effects: an Experimental Study
,”
Nonlinear Dyn.
,
99
(
1
), pp.
373
391
.
30.
Amabili
,
M.
, and
Balasubramanian
,
P.
,
2020
, “
Nonlinear Vibrations of Truncated Conical Shells Considering Multiple Internal Resonances
,”
Nonlinear Dyn.
,
100
(
1
), pp.
77
93
.
31.
Chorfi
,
S. M.
, and
Houmat
,
A.
,
2010
, “
Non-Linear Free Vibration of a Functionally Graded Doubly-Curved Shallow Shell of Elliptical Plan-Form
,”
Compos. Struct.
,
92
(
10
), pp.
2573
2581
.
32.
Bryan
,
A.
,
2018
, “
Free Vibration of Thin Shallow Elliptical Shells
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011004
.
33.
Bryan
,
A.
,
2018
, “
Free Vibration of Doubly Curved Thin Shells
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031003
.
34.
Shim
,
H. J.
, and
Kang
,
J.-H.
,
2004
, “
Free Vibrations of Solid and Hollow Hemi-Ellipsoids of Revolution From a Three-Dimensional Theory
,”
Int. J. Eng. Sci.
,
42
(
17–18
), pp.
1793
1815
.
35.
Kang
,
J.-H.
,
2007
, “
Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution With Arbitrary Curvature and Variable Thickness From a Three-Dimensional Theory
,”
Acta Mech.
,
188
(
1
), pp.
21
37
.
36.
Ko
,
S. M.
, and
Kang
,
J.-H.
,
2017
, “
Free Vibration Analysis of Shallow and Deep Ellipsoidal Shells Having Variable Thickness With and Without a Top Opening
,”
Acta Mech.
,
288
(
12
), pp.
4391
4409
.
37.
Chen
,
J.-H.
, and
Huang
,
T.
,
1985
, “
Appropriate Forms in Nonlinear Analysis
,”
ASCE J. Eng. Mech.
,
110
(
10
), pp.
1215
1226
.
38.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
39.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K. I.
,
2014
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
WS
.
40.
Langhaar
,
H. L.
,
1962
,
Energy Methods in Applied Mechanics
,
Wiley
,
New York
.
41.
Sohn
,
K.-A.
,
Juttler
,
B.
,
Kim
,
M.-S.
, and
Wang
,
W.
,
2002
, “
Computing Distance Between Surfaces Using Line Geometry
,”
Proceedings of 10th Pacific Conference on Computer Graphics and Applications
,
Beijing, China
,
Oct. 9–11
,
IEEE
, pp.
236
245
.
42.
Flugge
,
W.
,
1960
,
Stresses in Shells
,
Springer-Verlag
,
Berlin
.
43.
Langhaar
,
H. L.
,
1964
,
“Foundations of Practical Shell Analysis,” Lecture Note
,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
44.
Dym
,
C. L.
,
1990
,
Introduction to the Theory of Shells
,
Taylor and Francis
,
New York
.
45.
Radenković
,
G.
,
Borković
,
A.
, and
Marussig
,
B.
,
2021
, “
Nonlinear Static Isogeometric Analysis of Arbitrarily Curved Kirchhoff-Love Shells
,”
Int. J. Mech. Sci.
,
192
, p.
106143
.
46.
Rajasekaran
,
S.
, and
Murray
,
D. W.
,
1973
, “
Incremental Finite Element Matrices
,”
J. Struct. Div.
,
99
(
12
), pp.
2423
2438
.
47.
Prathap
,
G.
, and
Varadan
,
T. K.
,
1978
, “
The Large Amplitude Vibration of Hinged Beams
,”
Comput. Struct.
,
9
(
2
), pp.
219
222
.
48.
Jiang
,
S.
,
Yang
,
T.
,
Li
,
W. L.
, and
Du
,
J.
,
2013
, “
Vibration Analysis of Doubly Curved Shallows With Elastic Edge Restraints
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
051016
.
49.
Kim
,
J. G.
,
1998
, “
A Higher-Order Harmonic Element for Shells or Revolution Based on the Modified Mixed Formulation
,”
Ph.D. dissertation
,
Seoul National University
,
Seoul
.
50.
Artioli
,
E.
, and
Viola
,
E.
,
2006
, “
Free Vibration Analysis of Spherical Shells Using G.D.Q. Numerical Solution
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
370
378
.
51.
Lee
,
J.
,
2009
, “
Free Vibration Analysis of Spherical Caps by the Pseudospectral Method
,”
J. Mech. Sci. Technol.
,
23
(
1
), pp.
221
228
.
52.
Pulngern
,
T.
,
Halling
,
M. W.
,
Chucheepsakul
,
S.
, and
Poovarodom
,
N.
,
2006
, “
On the Free Vibrations of Variable-Arc-Length Beams: Analytical and Experimental
,”
ASCE J. Struct. Eng.
,
132
(
5
), pp.
772
780
.
You do not currently have access to this content.