Abstract

Many oscillatory systems of engineering and scientific interest (e.g., mechanical metastructures) exhibit nonproportional damping, wherein the mass-normalized damping and stiffness matrices do not commute. A new modal analysis technique for nonproportionally damped systems, referred to as the “dual-oscillator approach to complex-stiffness damping,” was recently proposed as an alternative to the current standard method originally developed by Foss and Traill-Nash. This article presents a critical comparison of the two approaches, with particular emphasis on the time required to compute the resonant frequencies of nonproportionally damped linear systems. It is shown that, for degrees-of-freedom greater than or equal to nine, the dual-oscillator approach is significantly faster (on average) than the conventional approach, and that the relative computation speed actually improves with the system’s degree-of-freedom. With 145 degrees-of-freedom, for example, the dual-oscillator approach is about 25% faster than the traditional approach. The difference between the two approaches is statistically significant, with attained significance levels less than machine precision. This suggests that the dual-oscillator approach is the faster of the two algorithms for computing resonant frequencies of nonproportionally damped discrete linear systems with large degrees-of-freedom, at least within the limits of the present study. The approach is illustrated by application to a model system representative of a mechanical metastructure.

References

1.
Myklestad
,
N. O.
,
1952
, “
The Concept of Complex Damping
,”
ASME J. Appl. Mech.
,
19
(
3
), pp.
284
286
.
2.
Neumark
,
S.
,
1962
, “
Concept of Complex Stiffness Applied to Problems of Oscillations With Viscous and Hysteretic Damping
,” Technical Report, Aeronautical Research Council Reports and Memoranda No. 3269, Her Majesty's Stationery Office, London.
3.
Yang
,
J. N.
,
Sarkani
,
S.
, and
Long
,
F. X.
,
1987
, “
Modal Analysis of Non-Classically Damped Structural Systems Using Canonical Transformation
,” Technical Report, The George Washington University.
4.
Liang
,
Z.
, and
Lee
,
G. C.
,
1991
, “
Damping of Structures: Part 1—Theory of Complex Damping
,” Technical Report NCEER-91-0004, State University of New York at Buffalo, New York.
5.
Inman
,
D. J.
,
2014
,
Engineering Vibration
, 4th ed.,
Pearson Education
,
New York
.
6.
Balachandran
,
B.
, and
Magrab
,
E. B.
,
2019
,
Vibrations
, 3rd ed,
Cambridge University Press
,
Cambridge, UK
.
7.
Tisseur
,
F.
, and
Meerbergen
,
K.
,
2001
, “
The Quadratic Eigenvalue Problem
,”
SIAM Rev.
,
43
(
2
), pp.
235
286
.
8.
Hammarling
,
S.
,
Munro
,
C. J.
, and
Tisseur
,
F.
,
2013
, “
An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems
,”
ACM Trans. Math. Softw.
,
39
(
3
), pp.
18:1
18:19
.
9.
Kabe
,
A. M.
, and
Sako
,
B. H.
,
2016
, “
Issues With Proportional Damping
,”
AIAA. J.
,
54
(
9
), pp.
0
0
.
10.
Bellos
,
J.
, and
Inman
,
D. J.
,
2023
, “
Modal Analysis of Non-Conservative Combined Dynamic Systems
,”
ASME J. Vib. Acoust.
,
145
(
1
), p.
011003
.
11.
Abdeljaber
,
O.
,
Avci
,
O.
, and
Inman
,
D. J.
,
2016
, “
Optimization of Chiral Lattice Based Metastructures for Broadband Vibration Suppression Using Genetic Algorithms
,”
J. Sound. Vib.
,
369
, pp.
50
62
.
12.
Matlack
,
K. H.
,
Bauhofer
,
A.
,
Krödel
,
S.
,
Palermo
,
A.
, and
Daraio
,
C.
,
2016
, “
Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption
,”
Proc. Natl. Acad. Sci. USA
,
113
(
30
), pp.
8386
8390
.
13.
Reichl
,
K. K.
, and
Inman
,
D. J.
,
2017
, “
Lumped Mass Model of a 1D Metastructure for Vibration Suppresion With No Additional Mass
,”
J. Sound. Vib.
,
403
, pp.
75
89
.
14.
Arretche
,
I.
, and
Matlack
,
K. H.
,
2019
, “
Experimental Testing of Vibration Mitigation in 3D-Printed Architected Metastructures
,”
ASME J. Appl. Mech.
,
86
(
11
), p.
111008
.
15.
Inman
,
D. J.
, and
Gunasekar
,
A.
,
2021
, “
Frequency Separation in Architected Structures Using Inverse Methods
,”
J. Appl. Comput. Mech.
,
7
(
4
), pp.
2084
2095
.
16.
Wang
,
F.
,
Sun
,
X.
, and
Xu
,
J.
,
2022
, “
Tunable Broadband Low-Frequency Band Gap of Multiple-Layer Metastructure Induced by Time-Delayed Vibration Absorbers
,”
Nonlinear Dyn.
,
107
(
3
), pp.
1903
1918
.
17.
Dalela
,
S.
,
Balaji
,
P. S.
, and
Jena
,
D. P.
,
2022
, “
Design of a Metastructure for Vibration Isolation With Quasi-Zero-Stiffness Characteristics Using Bistable Curved Beam
,”
Nonlinear Dyn.
,
108
(
3
), pp.
1931
1971
.
18.
Noll
,
S.
,
Dreyer
,
J.
, and
Singh
,
R.
,
2014
, “
Complex Eigensolutions of Coupled Flexural and Longitudinal Modes in a Beam With Inclined Elastic Supports With Non-Proportional Damping
,”
J. Sound. Vib.
,
333
(
3
), pp.
818
834
.
19.
Foss
,
K. A.
,
1956
, “
Coordinates Which Uncouple the Equations of Motion of Damped Linear Dynamic Systems
,” Technical Report 25-20, Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA.
20.
Traill-Nash
,
R. W.
,
1983
, “
Modal Methods in the Dynamics of Systems With Non-Classical Damping
,”
Earthquake Eng. Struct. Dyn.
,
9
(
2
), pp.
153
169
.
21.
Sorrentino
,
S.
,
Marchesiello
,
S.
, and
Piombo
,
B.
,
2003
, “
A New Analytical Technique for Vibration Analysis of Non-Proportionally Damped Beams
,”
J. Sound. Vib.
,
265
(
4
), pp.
765
782
.
22.
Anastasio
,
D.
,
Fasana
,
A.
,
Garibaldi
,
L.
, and
Marchesiello
,
S.
,
2019
, “
Analytical Investigation of Railway Overhead Contact Wiredynamics and Comparison With Experimental Results
,”
Mech. Syst. Signal. Process.
,
116
, pp.
277
292
.
23.
Sanders
,
J. W.
,
2022
, “
A Dual-Oscillator Approach to Complex-Stiffness Damping Based on Fourth-Order Dynamics
,”
Nonlinear Dyn.
,
109
(
2
), pp.
285
301
.
24.
Pais
,
A.
, and
Uhlenbeck
,
G. E.
,
1950
, “
On Field Theories With Non-Localized Action
,”
Phys. Rev.
,
79
, pp.
145
165
.
25.
Bender
,
C.
, and
Mannheim
,
P. D.
,
2008
, “
No-Ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck Oscillator Model
,”
Phys. Rev. Lett.
,
100
(
11
), p.
110402
.
26.
Smilga
,
A. V.
,
2009
, “
Comments on the Dynamics of the Pais-Uhlenbeck Oscillator
,”
Symmetry Integrability Geometry: Meth Applicat (SIGMA)
,
5
(
17
), p.
017
.
27.
Mostafazadeh
,
A.
,
2010
, “
A Hamilton Formulation of the Pais-Uhlenbeck Oscillator that Yields a Stable and Unitary Quantum System
,”
Phys. Lett. A.
,
375
(
2
), pp.
93
98
.
28.
Baleanu
,
D.
,
Petras
,
I.
,
Asad
,
J. H.
, and
Velasco
,
M. P.
,
2012
, “
Fractional Pais-Uhlenbeck Oscillator
,”
Int. J. Theor. Phys.
,
51
, pp.
1253
1258
.
29.
Chen
,
T.-J.
,
Fasiello
,
M.
,
Lim
,
E. A.
, and
Tolley
,
A. J.
,
2013
, “
Higher Derivative Theories With Constraints: Exorcising Ostrogradski’s Ghost
,”
J. Cosmol. Astroparticle Phys.
,
2013
(
2
), p.
042
.
30.
Eugeni
,
M.
,
Saltari
,
F.
, and
Mastroddi
,
F.
,
2021
, “
Structural Damping Models for Passive Aeroelastic Control
,”
Aerosp. Sci. Technol.
,
118
, p.
107011
.
31.
Brissonneau
,
N.
,
He
,
B.
,
Thomas
,
G. C.
, and
Sentis
,
L.
,
2021
, “
Biologically-Inspired Impedance Control With Hysteretic Damping
,”
IEEE Control Syst. Lett.
,
5
(
5
), pp.
1717
1722
.
32.
Sun
,
L.
,
Sun
,
J.
,
Nagarajaiah
,
S.
, and
Chen
,
L.
,
2021
, “
Inerter Dampers With Linear Hysteretic Damping for Cable Vibration Control
,”
Eng. Struct.
,
247
, p.
113069
.
33.
MathWorks®
, “
matlab®
,” https://www.mathworks.com/products/matlab.html, Accessed January 20, 2023.
34.
MathWorks®
, “
eigs: Subset of Eigenvalues and Eigenvectors
,”
MathWorks Help Center
, https://www.mathworks.com/help/matlab/ref/eigs.html, Accessed January 20, 2023.
35.
Wackerly
,
D. D.
,
Mendenhall
,
W.
, and
Scheaffer
,
R. L.
,
2008
,
Mathematical Statistics With Applications
, 7th ed.,
Cengage Learning
,
Boston, MA
.
36.
Bergman
,
L.
, and
Nicholson
,
J.
,
1985
, “
Forced Vibration of a Damped Combined Linear System
,”
ASME J. Vib., Acoust., Stress, and Reliab. Des.
,
107
(
3
), pp.
275
281
.
37.
Sun
,
Y.
,
Yuan
,
J.
,
Vizzaccaro
,
A.
, and
Salles
,
L.
,
2021
, “
Comparison of Different Methodologies for the Computation of Damped Nonlinear Normal Modes and Resonance Prediction of Systems With Non-Conservative Nonlinearities
,”
Nonlinear Dyn.
,
104
(
4
), pp.
3077
3107
.
38.
Sun
,
Y.
,
Vizzaccaro
,
A.
,
Yuan
,
J.
, and
Salles
,
L.
,
2021
, “
An Extended Energy Balance Method for Resonance Prediction in Forced Response of Systems With Non-Conservative Nonlinearities Using Damped Nonlinear Normal Mode
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3315
3333
.
39.
Yuan
,
J.
,
Sun
,
Y.
,
Schwingshackl
,
C.
, and
Salles
,
L.
,
2022
, “
Computation of Damped Nonlinear Normal Modes for Large Scale Nonlinear Systems in a Self-Adaptive Modal Subspace
,”
Mech. Syst. Signal. Process.
,
162
, p.
108082
.
40.
Jacobs
,
O. L. R.
,
1965
, “
The Damping Ratio of an Optimal Control System
,”
IEEE. Trans. Automat. Contr.
,
10
(
4
), pp.
473
476
.
You do not currently have access to this content.