Abstract

In this study, we investigate the importance of the fourth-order time derivative that appears in the equations derived by Jacques Antoine Charles Bresse in 1859, as well as in equations that were derived by Stephen Prokofievich Timoshenko and Paul Ehrenfest during years 1912 and 1913 and reported by Timoshenko in the 1916 book on the theory of elasticity in the Russian language and then in two papers dated 1920 and 1921, in English. The first part of the study demonstrates that Timoshenko and Ehrenfest did not overestimate the importance of the fourth-order derivative term in their equations. The second part deals with the debate on the so-called second spectrum attendant in the original set of equations. It is shown that in the truncated Timoshenko—Ehrenfest equations—which is asymptotically consistent with elasticity theory—“the second spectrum” issue does not arise. Thus, the two parts of this study are intricately interrelated with each other.

References

1.
Todhunter
,
I.
, and
Pearson
,
K.
1886 and 1893
,
A History of the Theory of Elasticity and of the Strength of Materials
,
Vols. I and II
,
Cambridge University Press
,
Cambridge
, UK (see also New York: Dover, 1960).
2.
Bresse
,
J. A. C.
,
1859
,
Cours de Mécanique Appliquée—Résistance des Matériaux et Stabilité des Constructions
,
Gauthier-Villars
,
Paris
(in French).
3.
Rayleigh
,
J. W.
, and
Strutt
,
B.
,
1877
,
The Theory of Sound
, Vol. 1,
Macmillan and Co.
,
London
.
4.
Timoshenko
,
S. P.
,
1972
,
A Course of Elasticity Theory. Part 2: Rods and Plates
, 2nd ed.,
A.E. Collins Publishers
,
St. Petersburg
, 1916 (in Russian), Kiev: “Naukova Dumka” Publishers, 341, pp.
337
338
.
5.
Timoshenko
,
S. P.
,
1920
, “
On the Differential Equation for the Flexural Vibrations of Prismatic Rods
,”
Glas. Hrvatskoga Prirod. Drustva
,
32
, pp.
55
57
.
6.
Timoshenko
,
S. P.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bar
,”
Philos. Mag. Ser.
,
6
(
245
), pp.
744
746
.
7.
Timoshenko
S. P.
,
1922
,
On the Transverse of Bars of Uniform Cross Sections
, Philosophical Magazine, Series 6, Vol.
43
,
125
131
, The Collected Papers, 288–290, McGraw-Hill, New York, 1953).
8.
Timoshenko
,
S. P.
,
1928
,
Vibration Problems in Engineering
,
Constable and Company
,
London
, p.
231
.
9.
Timoshenko
,
S. P.
,
1937
,
Vibration Problems in Engineering
, 2nd ed.,
Van Nostrand Reinhold Company
,
New York
.
10.
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1955
,
Vibration Problems in Engineering
, 3rd ed.,
Van Nostrand Reinhold Company
,
New York
.
11.
Timoshenko
,
S. P.
,
Young
,
D. H.
, and
Weaver
,
W.
, Jr.
,
1974
,
Vibration Problems in Engineering
, 4th ed.,
Wiley
,
New York
.
12.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. M.
,
1990
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
13.
Wang
,
C. M.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
,
2000
,
Shear Deformable Beams and Plates: Relationship With Classical Solutions
,
Elsevier
,
Oxford, UK
.
14.
Elishakoff
,
I.
,
2020
,
Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories
,
World Scientific
,
Singapore
.
15.
Shi
,
G.
, and
Guo
,
Q.
,
2021
, “
On the Appropriate Rotary Inertia in Timoshenko Beam Theory
,”
Int. J. Appl. Mech. Eng.
,
13
(
04
), p.
2150055
.
16.
Fung
,
Y. C.
, and
Tong
,
P.
,
2001
,
Classical and Computational Solid Mechanics
,
World Scientific
,
River Ridge, NJ
.
17.
Stephen
,
N. G.
,
1982
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
80
(
4
), pp.
578
582
.
18.
Stephen
,
N. G.
,
2006
, “
The Second Spectrum of Timoshenko Beam Theory—Further Assessment
,”
J. Sound Vib.
,
292
(
1–2
), pp.
372
389
.
19.
Stephen
,
N. G.
, and
Puchegger
,
S.
,
2006
, “
On the Valid Frequency Range of Timoshenko Beam Theory
,”
J. Sound Vib.
,
297
(
3–5
), pp.
1082
1087
.
20.
Elishakoff
,
I.
,
Kaplunov
,
J.
, and
Nolde
,
E.
,
2015
, “
Celebrating the Centenary of Timoshenko’s Study of Effects of Shear Deformation and Rotary Inertia
,”
Appl. Mech. Rev.
,
67
(
6
), p.
060802
.
21.
Díaz-de-Anda
,
A.
,
Flores
,
J.
,
Gutiérrez
,
L.
,
Méndez-Sánchez
,
R. A.
,
Monsivais
,
G.
, and
Morales
,
A.
,
2012
, “
Experimental Study of the Timoshenko Beam Theory Predictions
,”
J. Sound Vib.
,
331
(
26
), pp.
5732
5744
.
22.
Patra
,
A. K.
,
Gopalakrishnan
,
S.
, and
Ganguli
,
R.
,
2020
, “
Existence of Second Spectrums of Timoshenko Beam and Mindlin–Herrmann Rod Theories on the Basis of Atomistic Studies
,”
Acta Mech.
,
231
, pp.
1159
1171
.
23.
De Rosa
,
M. A.
,
Lippiello
,
M.
, and
Elishakoff
,
I.
,
2022
, “
Variational Derivation of Truncated Timoshenko-Ehrenfest Beam Theory
,”
J. Appl. Comput. Mech.
,
8
(
3
), pp.
996
1004
.
24.
Challamel
,
N.
, private communication, 20 April 2022.
25.
Elishakoff
,
I.
, and
Lubliner
,
E.
,
1985
, “Random Vibration of a Structure via Classical and Nonclassical Theories,”
Probabilistic Methods in the Mechanics of Solids and Structures
,
S.
Eggwertz
, and
N. C.
Lind
, eds.,
Springer
,
Berlin
, pp.
455
467
.
26.
Cazzani
,
A.
,
Stochino
,
F.
, and
Turco
,
E.
,
2016
, “
On the Whole Spectrum of Timoshenko Beams, Part 1: A Theoretical Revisitation
,”
Z. Angew. Math. Phys.
,
67
(
2
), p.
24
.
27.
Goens
,
E.
,
1931
, “
Über die Bestimmung des Elastizitätsmodulus von Stäben mit Hifle von Biegungsschwingungen
,”
Ann. Phys.
,
11
(
6
), pp.
649
678
. (in German).
28.
Trail-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effect of Shear Flexibility and Rotary Inertia on the Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
2
), pp.
186
222
.
29.
Abbas
,
B. A. H.
, and
Thomas
,
J.
,
1977
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
51
(
1
), pp.
123
137
.
30.
Bhashyam
,
G. R.
, and
Prathap
,
G.
,
1981
, “
The Second Frequency Spectrum of Timoshenko Beams
,”
J. Sound Vib.
,
76
(
3
), pp.
407
420
.
31.
Hathout
,
I. A.
,
Leipholz
,
H.
, and
Singha
,
F. K.
,
1980
, “
Sensitivity of the Frequencies of Damped Timoshenko Beam
,”
J. Eng. Sci. Univ. Riyadh
,
6
(
2
), pp.
113
121
.
32.
Levinson
,
M.
, and
Cooke
,
D. W.
,
1981
, “
On the Two Frequency Spectra of Timoshenko Beams
,”
J. Sound Vib.
,
84
(
3
), pp.
319
326
.
33.
Bhaskar
,
A.
,
2009
, “
Elastic Waves in Timoshenko Beams: The ‘Lost and Found’ of an Eigenmode
,”
Proc. R. Soc. London, Ser. A
,
465
(
2101
), pp.
239
255
.
34.
Nesterenko
,
V. V.
,
1993
, “
A Theory for Transverse Vibrations of the Timoshenko Beam
,”
PMM. J. Appl. Math. Mech.
,
57
(
4
), pp.
669
677
.
35.
Chervyakov
,
A. M.
, and
Nesterenko
,
V. V.
,
1993
, “
Is It Possible to Assign Physical Meaning to Field Theory With Higher Derivatives?
,”
Phys, Rev. D
,
48
(
12
), pp.
5811
5817
.
36.
Postnov
,
V. A.
,
Kalinin
,
V. S.
, and
Rostovtsev
,
D. M.
,
1983
,
Ship Vibrations
,
Sudostroenie Publishing House
,
Leningrad
(in Russian).
37.
Postnov
,
V. A.
, and
Fedorov
,
A. S.
,
1963
, “
On the Second Frequency Spectrum in the General Vibration of Ship’s Hull
,”
Coll. Pap. Sudprom Sci. Tech. Soc.
,
54
, pp.
60
77
. (in Russian).
38.
Kumai
,
T.
,
1959
, “
On a Second Spectrum of the Natural Frequency of the Flexural Vibration of Ship’s Hull
,”
Eur. Shipbuild.
, (
7
).
39.
Manevich
,
A. I.
,
2015
, “
Dynamics of Timoshenko Beam on Linear and Nonlinear Foundation: Phase Relations, Significance of the Second Spectrum, Stability
,”
J. Sound Vib.
,
344
, pp.
209
220
.
40.
van Rensburg
,
N. F. J.
, and
van der Merve
,
A. J.
,
2006
, “
Natural Frequencies and Modes of a Timoshenko Beam
,”
Wave Motion
,
44
(
1
), pp.
58
69
.
41.
Pilkey
,
W.
,
2005
,
Formulas for Stress, Strain and Structural
,
Wiley
,
New York
.
42.
Gopalakrishnan
,
S.
,
2016
,
Wave Propagation in Materials and Structures
,
CRC Press
,
Boca Raton, FL
.
43.
Miklowitz
,
J.
,
1978
,
The Theory of Elastic Waves and Waveguides
,
North Holland Publishing Company
,
Amsterdam
.
44.
Almeida Júnior
,
D. S.
, and
Ramos
,
A.
,
2017
, “
On the Nature of Dissipative Timoshenko Systems at Light of the Second Spectrum of Frequency
,”
Z. Angew. Math. Phys.
,
68
(
6
), pp.
1
31
.
45.
Barr
,
A. D. S.
,
1956
, “
Some Notes on the Resonance of Timoshenko Beams and the Effects of Lateral Inertia on Flexural Vibration
,”
Proceedings of the 9th International Congress of Applied Mechanics
,
Brussels, Belgium
,
Sept. 5–13
, Vol. 7, pp.
448
458
.
46.
Geist
,
B.
, and
McLaughlin
,
J. R.
,
1997
, “
Double Eigenvalues for the Uniform Timoshenko Beam
,”
Appl. Math. Lett.
,
10
(
3
), pp.
129
134
.
47.
O’Reilly
,
O. M.
, and
Turcotte
,
J. C.
,
1996
, “
Another Mode of Vibration in a Timoshenko Beam
,”
J. Sound Vib.
,
198
(
4
), pp.
517
521
.
48.
Chan
,
K. T.
,
Wang
,
X. Q.
,
So
,
R. M.
, and
Reid
,
S. R.
,
2002
, “
Superposed Standing Waves on a Timoshenko Beam
,”
Proc. R. Soc. London, Ser. A
,
458
, pp.
83
108
.
49.
Monsivais
,
G.
,
Díaz-de-Anda
,
A.
,
Flores
,
J.
,
Gutiérrez
,
L.
, and
Morales
,
A.
,
2016
, “
Experimental Study of the Timoshenko Beam Theory Predictions: Further Results
,”
J. Sound Vib.
,
375
, pp.
187
199
.
50.
da Costa Azevêdo
,
A. S.
,
Vasconcelos
,
A. C.
, and
dos Santos Hoefel
,
S.
,
2016
, “
Dynamic Analysis of Elastically Supported Timoshenko Beam
,”
Revista Interdisciplinar de Pesquisa em Engenharia-RIPE
,
2
(
34
), pp.
71
85
.
51.
da Silva Bezerra
,
W. K.
,
Soares
,
L. S.
, and
dos Santos Hoefel
,
S.
,
2017
,
Second Spectrum of Timoshenko Beam on Pasternak Foundation
, CILAMCE, Florianopolis, Santa Catarina, Brazil.
52.
Gul
,
U.
, and
Aydogdu
,
M.
,
2018
, “
Wave Propagation Analysis in Beams Using Shear Deformable Beam Theories Considering Second Spectrum
,”
J. Mech.
,
34
(
3
), pp.
279
289
.
53.
Gul
,
U.
,
Aydogdu
,
M.
, and
Karacam
,
F.
,
2019
, “
Dynamics of a Functionally Graded Timoshenko Beam Considering New Spectrums
,”
Compos. Struct.
,
207
, pp.
273
291
.
54.
Anderson
,
R. A.
,
1953
, “
Flexural Vibrations in Uniform Beams According to the Timoshenko Theory
,”
ASME J. Appl. Mech.
,
20
(
4
), pp.
504
510
.
55.
Dolph
,
C. L.
,
1954
, “
On the Timoshenko Theory of Transverse Beam Vibrations
,”
Q. Appl. Math.
,
12
(
2
), pp.
175
187
.
56.
Huang
,
T. C.
,
1961
, “
The Effect of Rotatory Inertia and of Shear Deformations on the Frequency and Normal Mode Equation Beams With Simple End Conditions
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
579
584
.
57.
Young
,
D. H.
,
1962
, “Continuous Systems,”
Handbook of Engineering Mechanics
, 4th ed.,
W.
Flügge
, ed.,
McGraw Hill
,
New York
, pp.
61.14
61.18
.
58.
Downs
,
B.
,
1976
, “
Transverse Vibration of a Uniform, Simply Supported Timoshenko Beam Without Transverse Deflection
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
671
674
.
59.
Amato
,
M.
,
Elishakoff
,
I.
, and
Reddy
,
J. N.
,
2021
, “
Flutter of a Multicomponent Beam in a Supersonic Flow
,”
AIAA J.
,
59
(
11
), pp.
4342
4353
.
60.
Ramos
,
A. J.
,
Aouadi
,
M.
,
Almeida Júnior
,
D. S.
,
Freitas
,
M. M.
, and
Araújo
,
M. L.
,
2021
, “
A New Stabilization Scenario for Timoshenko Systems With Thermo-diffusion Effects in Second Spectrum Perspective
,”
Arch. Math.
,
116
(
2
), pp.
203
219
.
61.
Kaplunov
,
J.
,
2022
, private communication, April 7.
62.
Almeida Júnior
,
D. S.
,
Ramos
,
A. J. A.
,
Santos
,
M. L.
, and
Gutemberg
,
L. R. M.
,
2018
, “
Asymptotic Behavior of Weakly Dissipative Bresse-Timoshenko System on Influence of the Second Spectrum of Frequency
,”
Z. fur Angew. Math. Mech.
,
98
(
8
), pp.
1320
1333
.
63.
Almeida Júnior
,
D. S.
,
Ramos
,
A. J. A.
,
Soufyane
,
A.
,
Freitas
,
M. M.
, and
Santos
,
M. L.
,
2022
, “
Impact of the Damaging Consequences of the Second Spectrum on the Stabilization of Nonlinear Timoshenko Systems
,”
Acta Appl. Math.
,
180
(
1
), pp.
1
23
.
64.
Bhat
,
K. S.
,
Sarkar
,
K.
,
Ganguli
,
R.
, and
Elishakoff
,
I.
,
2018
, “
Slope-Inertia Model of Non-uniform and Inhomogeneous Bresse-Timoshenko Beams
,”
AIAA J.
,
56
(
10
), pp.
4158
4168
.
65.
Khasawneh
,
F. A.
, and
Segalman
,
D.
,
2019
, “
Exact and Numerically Stable Expressions for Euler-Bernoulli and Timoshenko Beam Modes
,”
Appl. Acoust.
,
151
, pp.
215
228
.
66.
Xia
,
G.
,
Shu
,
W.
, and
Stanciulescu
,
I.
,
2020
, “
Analytical and Numerical Studies on the Slope Inertia-Based Timoshenko Beam
,”
J. Sound Vib.
,
473
, p.
115227
.
67.
Lei
,
T.
,
Zheng
,
Y.
,
Yu
,
R.
,
Yan
,
Y.
, and
Xu
,
B.
,
2022
, “
Dynamic Response of Slope Inertia-Based Timoshenko Beam Under a Moving Load
,”
Appl. Sci.
,
12
(
6
), p.
3045
.
68.
Elishakoff
,
I.
, and
Lubliner
,
E.
,
1988
, “Random Vibrations of Structures With Complicating Effects,”
Stochastic Structural Dynamics–Progress: Theory and Applications
,
S. T.
Ariaratnam
,
G. I.
Schuëller
, and
I.
Elishakoff
, eds.,
Elsevier, London
,
London
, pp.
47
64
.
69.
Almeida Júnior
,
D. S.
,
Elishakoff
,
I.
,
Ramos
,
A. J. A.
, and
Rosário Miranda
,
L. G.
,
2019
, “
The Hypothesis of Equal Wave Speeds for Stabilization of Timoshenko Beam is Not Necessary Anymore: The Time Delay Cases
,”
IMA J. Appl. Math.
,
84
(
4
), pp.
763
796
.
70.
Carrera
,
E.
,
Elishakoff
,
I.
, and
Petrolo
,
M.
,
2021
, “
Who Needs Refined Structural Theories?
,”
Compos. Struct.
,
264
, p.
113671
.
71.
Challamel
,
N.
, and
Elishakoff
,
I.
,
2019
, “
A Brief History of First-Order Shear-Deformable Beam and Plate Models
,”
Mech. Res. Commun.
,
102
, p.
103389
.
72.
Elishakoff
,
I.
,
Hache
,
F.
, and
Challamel
,
N.
,
2018
, “
Variational Derivation of Governing Differential Equations for Truncated Version of Bresse-Timoshenko Beams
,”
J. Sound Vib.
,
435
, pp.
409
430
.
73.
Elishakoff
,
I.
,
Li
,
Y.
,
Challamel
,
N.
, and
Reddy
,
J. N.
,
2022
, “
Simplified Timoshenko–Ehrenfest Beam Equation to Analyze Metamaterials
,”
J. Appl. Phys.
,
131
(
10
), p.
104902
.
74.
Erofeev
,
V. I.
,
Kazhaev
,
V. V.
,
Lisenkova Ye
,
Y.
, and
Semerikova
,
N. P.
,
2009
, “
Comparative Analysis of Dynamical Behavior of Beams in Bernoulli-Euler, Rayleigh, and Timoshenko Models Lying on Elastic Foundation
,” Vestnik Nauchno-Tekhnicheskogo Razvitiya,
8
(
24
), pp.
18
26
. (in Russian).
75.
Faghidian
,
S. A.
,
Żur
,
K. K.
,
Reddy
,
J. N.
, and
Ferreira
,
A. J. M.
,
2021
, “
On the Wave Dispersion in Functionally Graded Porous Timoshenko-Ehrenfest Nanobeams Based on the Higher-Order Nonlocal Gradient Elasticity
,”
Compos. Struct.
,
279
, p.
114819
.
76.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.
77.
Méndez-Sánchez
,
R. A.
,
Morales
,
A.
, and
Flores
,
J.
,
2005
, “
Experimental Check in the Accuracy of Timoshenko’s Beam Theory
,”
J. Sound Vib.
,
279
(
1–2
), pp.
508
512
.
78.
Nesterenko
,
V. V.
, and
Chervyakov
,
A. M.
,
1994
, “
Parabolic Approximation to the Theory of Transverse Vibrations of Rods and Beams
,”
J. Appl. Mech. Tech. Phys.
,
35
(
2
), pp.
151
154
. (in Russian).
79.
Shi
,
G.
, and
Voyiadjis
,
G. Z.
,
2011
, “
A Sixth-Order Theory of Shear Deformable Beams With Variational Consistent Boundary Conditions
,”
Appl. Acoust.
,
78
(
2
), p.
021019
.
80.
Timoshenko
,
S. P.
,
1953
,
Collected Papers
,
McGraw-Hill
,
New York
.
81.
Timoshenko
,
S. P.
,
1963
,
Remembrances
,
Boulogne-sur-Seine
,
Paris
(in Russian).
82.
Timoshenko
,
S. P.
,
1968
,
As I Remember: The Autobiography of Stephen P. Timoshenko
,
Van Nostrand
,
Princeton
.
83.
Timoshenko
,
S. P.
,
1972
,
A Course in Theory of Elasticity
, 2nd ed.,
Naukova Dumka Publishers
,
Kiev
(in Russian).
84.
Timoshenko
,
S. P.
,
1993
,
Vospominaniya (Remembrances)
,
Naukova Dumka Publishers
,
Kiev
(in Russian).
85.
Timoshenko
,
S. P.
2006
,
Errinerungen—eine Autobiographie
, Ernst und Sohn,
Berlin
(in German).
86.
Timoshenko
,
S. P.
,
2014
,
Vospominaniya (Remembrances)
,
Vyzovskaya Kniga Publishers
,
Moscow
(in Russian).
You do not currently have access to this content.