Abstract

Beam structures are widely used in various engineering occasions to model various structures. Numerous researchers have studied dynamic responses of beam structures with nonlinear supports or nonlinear foundations. In engineering, nonlinear supports were subjected to the beam structure through the surface contact rather than the point connection. Few works studied the dynamic behavior of the beam structure with local uniform cubic nonlinear stiffness foundations. Additionally, the boundary rotational restraints of the beam structure are ignored. To improve the engineering acceptance of the beam structure with nonlinearity, it is of great significance to study the dynamic behavior of the generally restrained axially loaded beam structure with a local uniform nonlinear foundation. This work establishes a nonlinear dynamic model of the beam structure with a local uniform nonlinear foundation. Dynamic responses of the beam structure are predicted through the Galerkin truncated method. In Galerkin truncated method, mode functions of the axially loaded beam structure without the local uniform nonlinear foundation are selected as the trail and weight functions. The harmonic balance method is employed to verify the correctness of the Galerkin truncated method. The influence of the sweeping ways and local uniform nonlinear foundation on dynamic responses of the generally restrained axially loaded beam structure is investigated. Dynamic responses of the generally restrained axially loaded beam structure with a local uniform nonlinear foundation are sensitive to its calculation initial values. Suitable parameters of the local uniform nonlinear foundation can suppress the vibration response and transform the vibration state of the beam structure.

References

1.
Kang
,
K. H.
, and
Kim
,
K. J.
,
1996
, “
Modal Properties of Beams and Plates on Resilient Supports With Rotational and Translational Complex Stiffness
,”
J. Sound Vib.
,
190
(
2
), pp.
207
220
.
2.
Wang
,
J. T. S.
, and
Lin
,
C. C.
,
1996
, “
Dynamic Analysis of Generally Supported Beams Using Fourier Series
,”
J. Sound Vib.
,
196
(
3
), pp.
285
293
.
3.
Kim
,
H. K.
, and
Kim
,
M. S.
,
2001
, “
Vibration of Beams With Generally Restrained Boundary Conditions Using Fourier Series
,”
J. Sound Vib.
,
245
(
5
), pp.
771
784
.
4.
Li
,
W. L.
,
2000
, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
,
237
(
4
), pp.
709
725
.
5.
Wang
,
Q. S.
,
Shi
,
D. Y.
, and
Liang
,
Q.
,
2016
, “
Free Vibration Analysis of Axially Loaded Laminated Composite Beams With Generally Boundary Conditions by Using a Modified Fourier–Ritz Approach
,”
J. Compos. Mater.
,
50
(
15
), pp.
2111
2135
.
6.
Wang
,
Y. H.
,
Du
,
J. T.
, and
Cheng
,
L.
,
2019
, “
Power Flow and Structural Intensity Analyses of Acoustic Black Hole Beams
,”
Mech. Syst. Signal Process
,
131
, pp.
538
553
.
7.
Chen
,
Q.
, and
Du
,
J. T.
,
2019
, “
A Fourier Series Solution for the Transverse Vibration of Rotating Beams With Elastic Boundary Supports
,”
Appl. Acoust.
,
155
, pp.
1
15
.
8.
Du
,
J. T.
, and
Chen
,
Q.
,
2020
, “
Design of Distributed Piezoelectric Modal Sensor for a Rotating Beam With Elastic Boundary Restraints
,”
J. Vib. Control
,
26
(
23–24
), pp.
2340
2354
.
9.
Zhao
,
Y. H.
,
Du
,
J. T.
, and
Xu
,
D. S.
,
2020
, “
Vibration Characteristics Analysis for an Axially Loaded Beam With Elastic Boundary Restraints
,”
J. Vib. Shock
,
39
(
15
), pp.
109
117
.
10.
Xu
,
D. S.
,
Du
,
J. T.
, and
Zhao
,
Y. H.
,
2020
, “
Flexural Vibration and Power Flow Analyses of Axially Loaded Beams With General Boundary and Non-Uniform Elastic Foundations
,”
Adv. Mech. Eng.
,
12
(
5
), pp.
1
14
.
11.
Albarracín
,
C. M.
,
Zannier
,
L.
, and
Grossi
,
R. O.
,
2004
, “
Some Observations in the Dynamics of Beams With Intermediate Supports
,”
J. Sound Vib.
,
271
(
1–2
), pp.
475
480
.
12.
Wang
,
D. P.
,
Michael
,
I. F.
, and
Lei
,
Y. J.
,
2006
, “
Maximizing the Natural Frequency of a Beam With an Intermediate Elastic Support
,”
J. Sound Vib.
,
291
(
3–5
), pp.
1229
1238
.
13.
Darabi
,
M. A.
,
Kazemirad
,
S.
, and
Ghayesh
,
M. H.
,
2012
, “
Free Vibrations of Beam–Mass–Spring Systems: Analytical Analysis With Numerical Confirmation
,”
Acta Mech. Sin.
,
28
(
2
), pp.
468
481
.
14.
Burlon
,
A.
,
Faila
,
G.
, and
Arena
,
F.
,
2016
, “
Exact Frequency Response Analysis of Axially Loaded Beams With Viscoelastic Dampers
,”
Int. J. Mech. Sci.
,
115-116
, pp.
370
384
.
15.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2013
, “
Experimental Investigation of a Vibration Isolation System Using Negative Stiffness Structure
,”
Int. J. Mech. Sci.
,
70
, pp.
99
112
.
16.
Huang
,
X. C.
,
Liu
,
X. T.
,
Sun
,
J. Y.
,
Zhang
,
Z. Y.
, and
Hua
,
H. X.
,
2014
, “
Vibration Isolation Characteristics of a Nonlinear Isolator Using Euler Buckled Beam As Negative Stiffness Corrector: A Theoretical and Experimental Study
,”
J. Sound Vib.
,
333
(
4
), pp.
1132
1148
.
17.
Han
,
J. S.
,
Meng
,
L. S.
, and
Sun
,
J. G.
,
2018
, “
Design and Characteristics Analysis of a Nonlinear Isolator Using a Curved-Mount–Spring–Roller Mechanism as Negative Stiffness Element
,”
Math. Probl. Eng.
, p.
1359461
.
18.
Qiu
,
Y.
,
Zhu
,
Y. P.
,
Luo
,
Z.
,
Gao
,
Y.
, and
Li
,
Y. Q.
,
2021
, “
The Analysis and Design of Nonlinear Vibration Isolators Under Both Displacement and Force Excitations
,”
Arch. Appl. Mech.
,
91
(
5
), pp.
2159
2178
.
19.
Pakdemirli
,
M.
, and
Boyacı
,
H.
,
2003
, “
Non-Linear Vibrations of a Simple–Simple Beam With a Non-Ideal Support in Between
,”
J. Sound Vib.
,
268
(
2
), pp.
331
341
.
20.
Ghayesh
,
M. H.
,
Kazemirad
,
S.
, and
Darabi
,
M. A.
,
2011
, “
A General Solution Procedure for Vibrations of Systems With Cubic Nonlinearities and Nonlinear/Time-Dependent Internal Boundary Conditions
,”
J. Sound Vib.
,
330
(
22
), pp.
5382
5400
.
21.
Ghayesh
,
M. H.
,
2012
, “
Nonlinear Dynamic Response of a Simply-Supported Kelvin–Voigt Viscoelastic Beam, Additionally Supported by a Nonlinear Spring
,”
Nonlinear Anal. Real World Appl.
,
13
(
3
), pp.
1319
1333
.
22.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2012
, “
Nonlinear Vibrations and Stability of an Axially Moving Beam With an Intermediate Spring Support: Two-Dimensional Analysis
,”
Nonlinear Dyn.
,
70
(
1
), pp.
335
354
.
23.
Ghayesh
,
M. H.
,
Kazemirad
,
S.
, and
Reid
,
T.
,
2012
, “
Nonlinear Vibrations and Stability of Parametrically Exited Systems With Cubic Nonlinearities and Internal Boundary Conditions: A General Solution Procedure
,”
Appl. Math. Model.
,
36
(
7
), pp.
3299
3311
.
24.
Wang
,
Y. R.
, and
Fang
,
Z. W.
,
2015
, “
Vibrations in an Elastic Beam With Nonlinear Supports at Both Ends
,”
J. Appl. Mech. Tech. Phys.
,
56
(
2
), pp.
337
346
.
25.
Mao
,
X. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2017
, “
Vibration of Flexible Structures Under Nonlinear Boundary Conditions
,”
ASME J. Appl. Mech.
,
84
(
11
), p.
111006
.
26.
Ding
,
H.
,
Lu
,
Z. Q.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Isolation of Transverse Vibration of Pre-Pressure Beams
,”
J. Sound Vib.
,
442
, pp.
738
751
.
27.
Ghayesh
,
M. H.
,
2018
, “
Mechanics of Tapered AFG Shear-Deformable Microbeams
,”
Microsyst. Technol.
,
24
(
4
), pp.
1743
1754
.
28.
Ghayesh
,
M. H.
,
2019
, “
Asymmetric Viscoelastic Nonlinear Vibrations of Imperfect AFG Beams
,”
Appl. Acoust.
,
154
, pp.
121
128
.
29.
Ghayesh
,
M. H.
,
2019
, “
Dynamical Analysis of Multilayered Cantilevers
,”
Commun. Nonlinear Sci. Numer. Simul.
,
71
, pp.
244
253
.
30.
Ding
,
H.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Vibration of a Slightly Curved Beam With Quasi-Zero-Stiffness Isolators
,”
Nonlinear Dyn.
,
95
, pp.
2367
2382
.
31.
Burlon
,
A.
,
Kougioumtzoglou
,
I. A.
,
Failla
,
G.
, and
Arena
,
F.
,
2019
, “
Nonlinear Random Vibrations of Beams With In-Span Supports Via Statistical Linearization With Constrained Modes
,”
J. Eng. Mech.
,
145
(
6
), p.
04019038
.
32.
Zhao
,
Y. H.
, and
Du
,
J. T.
,
2021
, “
Dynamic Behavior of an Axially Loaded Beam Supported by a Nonlinear Spring–Mass System
,”
Int. J. Struct. Stab. Dyn.
,
21
(
11
), p.
2150152
.
33.
Tsiatas
,
G. C.
,
2010
, “
Nonlinear Analysis of Non-Uniform Beams on Nonlinear Elastic Foundation
,”
Acta Mech.
,
209
(
1–2
), pp.
141
152
.
34.
Ma
,
J. J.
,
Liu
,
F. J.
,
Nie
,
M. Q.
, and
Wang
,
J. B.
,
2018
, “
Nonlinear Free Vibration of a Beam on Winkler Foundation With Consideration of Soil Mass Motion of Finite Depth
,”
Nonlinear Dyn.
,
92
(
2
), pp.
429
441
.
35.
Essa
,
S.
,
2018
, “
Analysis of Elastic Beams on Linear and Nonlinear Foundations Using Finite Difference Method
,”
Eurasian J. Sci. Eng.
,
3
(
3
), pp.
92
101
.
36.
Dang
,
V. H.
, and
Le
,
Q. D.
,
2019
, “
Analysis of Nonlinear Vibration of Euler–Bernoulli Beams Subjected to Compressive Axial Force Via the Equivalent Linearization Method With a Weighted Averaging
,”
Int. J. Sci. Innov. Math. Res.
,
7
(
1
), pp.
4
13
.
You do not currently have access to this content.