Abstract

Underplatform dampers are used to limit the resonant vibration of turbine blades. In recent years, various strategies have been implemented to maximize their damping capability. Curved-flat dampers are preferred to ensure a predictable bilateral contact, while a pre-optimization procedure was developed to exclude all those cross-sectional shapes that will bring the damper to roll and thus limit the amount of dissipated energy. The pre-optimization bases its predictions on the assumption that the effective width of the flat contact interface corresponds to the nominal one. It is shown here that this hypothesis cannot be relied upon: the energy dissipated by two nominally identical dampers, machined according to the usual industrial standards, may differ by a factor up to three due to the morphology of the flat-to-flat contact interface. Five dampers have been tested on two dedicated test rigs, available in the AERMEC laboratory, specially designed to reveal the details of the damper behavior during operation. Their contact interfaces are scanned by means of a profilometer. In each case, the mechanics, the kinematics, and the effectiveness of the dampers in terms of cycle shape and dissipated energy are correlated to the morphology of the specific contact surface. To complete the picture, a state-of-the-art numerical simulation tool is used to show how this tribo-mechanic phenomenon, in turn, influences the damper effect on the dynamic response of the turbine.

References

1.
Griffin
,
J.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
J. Eng. Power
,
102
(
2
), p.
329
. 10.1115/1.3230256
2.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 2—Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
418
423
. 10.1115/1.2818139
3.
Ciǧeroǧlu
,
E.
,
An
,
N.
, and
Menq
,
C.
,
2007
, “
Wedge Damper Modeling and Forced Response Prediction of Frictionally Constrained Blades
,”
ASME Turbo Expo
,
Montreal, Canada
,
May 14–17
,
ASME
, pp.
519
528
.
4.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
. 10.1115/1.2372775
5.
Petrov
,
E.
,
2008
, “
Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022502
. 10.1115/1.2772633
6.
Schwingshackl
,
C.
,
Petrov
,
E.
, and
Ewins
,
D.
,
2012
, “
Effects of Contact Interface Parameters on Vibration of Turbine Bladed Disks With Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032507
. 10.1115/1.4004721
7.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME Turbo Expo Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
,
Munich, Germany
,
May 8–11
,
ASME
, pp. V004T03A068: 1–8.
8.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Götting
,
F.
,
Kayser
,
A.
, and
Wolter
,
I.
,
2004
, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,”
ASME Turbo Expo
,
Vienna, Austria
,
June 14–17
, pp.
269
280
9.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
Best Practices for Underplatform Damper Designers
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
7
), pp.
1221
1235
. 10.1177/0954406217753654
10.
Hüls
,
M.
,
von Scheidt
,
L. P.
, and
Wallaschek
,
J.
,
2018
, “
Influence of Geometric Design Parameters Onto Vibratory Response and HCF Safety for Turbine Blades With Friction Damper
,”
ASME Turbo Expo Volume 7C: Structures and Dynamics
,
Oslo, Norway
,
June 11–15
,
ASME
, pp. V07CT35A008: 1–14.
11.
Yang
,
B.
,
Chu
,
M.
, and
Menq
,
C.
,
1998
, “
Stick-Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
. 10.1006/jsvi.1997.1305
12.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
. 10.1115/1.1989354
13.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
, pp.
589
636
. 10.1007/s11831-016-9183-2
14.
Gastaldi
,
C.
, and
Gola
,
M.
,
2016
, “
On the Relevance of a Microslip Contact Model for Under-Platform Dampers
,”
Int. J. Mech. Sci.
,
115–116
, pp.
145
156
. 10.1016/j.ijmecsci.2016.06.015
15.
Brake
,
M.
,
2018
,
The Mechanics of Jointed Structures
,
An Overview of Constitutive Models
,
Brake
and
R. W.
Matthew
, eds.,
Springer
,
New York
, pp.
207
222
.
16.
Xu
,
C.
,
Li
,
D.
,
Gola
,
M. M.
, and
Gastaldi
,
C.
,
2018
, “
A Comparison of Two Microslip Contact Models for Studying the Mechanics of Underplatform Dampers
,”
ASME Turbo Expo Volume 7C: Structures and Dynamics
,
Oslo, Norway
,
June 11–15
,
ASME
, pp.V07CT35A021: 1–8.
17.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
. 10.1016/j.jsv.2018.08.014
18.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
. 10.1006/jsvi.1998.1802
19.
Afzal
,
M.
,
Arteaga
,
I. L.
, and
Kari
,
L.
,
2016
, “
An Analytical Calculation of the Jacobian Matrix for 3D Friction Contact Model Applied to Turbine Blade Shroud Contact
,”
Comput. Struct.
,
177
, pp.
204
217
. 10.1016/j.compstruc.2016.08.014
20.
Hartung
,
A.
,
Hackenberg
,
H.-P.
,
Krack
,
M.
,
Gross
,
J.
,
Heinze
,
T.
, and
von Scheidt
,
L. P.
,
2018
, “
Rig and Engine Validation of the Non-Linear Forced Response Analysis Performed by the Tool OrAgL
,”
ASME Turbo Expo Volume 7C: Structures and Dynamics
,
Oslo, Norway
,
June 11–15
,
ASME
, pp. V07CT35A003: 1–10.
21.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2016
, “
Testing, Simulating and Understanding Under-Platform Damper Dynamics
,”
Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016)
,
Crete Island, Greece
,
June 5–10
, pp.
1
12
.
22.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
. 10.1016/j.ymssp.2016.09.007
23.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2020
, “
A Novel Test Rig for Friction Parameters Measurement on Underplatform Dampers
,”
Int. J. Solids Struct.
,
185–186
, pp.
170
181
. 10.1016/j.ijsolstr.2019.08.030
24.
Gola
,
M.
, and
Liu
,
T.
,
2014
, “
A Direct Experimental–Numerical Method for Investigations of a Laboratory Under-Platform Damper Behavior
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4245
4259
. 10.1016/j.ijsolstr.2014.08.011
25.
Gastaldi
,
C.
,
Berruti
,
T. M.
,
Gola
,
M. M.
, and
Bessone
,
A.
,
2019
, “
Experimental Investigation on Real Under-Platform Dampers: The Impact of Design and Manufacturing
,”
Proceedings of ASME Turbo EXPO 2019
,
Phoenix, AZ
,
June 17–21
, pp. V07BT35A004: 1–14.
26.
Fantetti
,
A.
,
Tamatam
,
L.
,
Volvert
,
M.
,
Lawal
,
I.
,
Liu
,
L.
,
Salles
,
L.
,
Brake
,
M.
,
Schwingshackl
,
C.
, and
Nowell
,
D.
,
2019
, “
The Impact of Fretting Wear on Structural Dynamics: Experiment and Simulation
,”
Tribol. Int.
,
138
, pp.
111
124
. 10.1016/j.triboint.2019.05.023
27.
Gastaldi
,
C.
,
2017
, “
Vibration Control and Mitigation in Turbomachinery
,”
Ph.D. thesis
,
Department of Mechanical and Aerospace Engineering, Politecnico di Torino
,
Torino, Italy
.
28.
Harris
,
T.
, and
Kotzalas
,
M.
,
2006
,
Rolling Bearing Analysis
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
29.
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2018
, “
Competitive Time Marching Solution Methods for Systems With Friction-Induced Nonlinearities
,”
Appl. Sci.
,
8
(
2
), p.
291
. 10.3390/app8020291
30.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
. 10.2514/3.4741
31.
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2017
, “
A Method to Solve the Efficiency-Accuracy Trade-Off of Multi-Harmonic Balance Calculation of Structures With Friction Contacts
,”
Int. J. Non-Linear Mech.
,
92
, pp.
25
40
. 10.1016/j.ijnonlinmec.2017.03.010
32.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2018
, “
Criteria for Best Performance of Pre-Optimized Solid Dampers
,”
ASME Turbo Expo 2018 Volume 7C: Structures and Dynamics
,
Oslo, Norway
,
June 11–15
, ASME, pp. V07CT35A019: 1–12.
You do not currently have access to this content.