Abstract

A numerical methodology is described to study the influence of the contact location and contact condition of friction damper in aircraft engines. A simplified beam model is used to represent the blade for the preliminary design stage. The frictional damper is numerically analyzed based on two parameters, contact angle and vertical position of the platform. The nonlinear modal analysis is used to investigate the nonlinear dynamic behavior and damping performances of the system. The harmonic balanced method with the continuation technique is used to compute the nonlinear modes for a large range of energy levels. By using such a modeling strategy, the modal damping ratio, resonant amplitude, and resonant frequency are directly and efficiently computed for a range of design parameters. Monte Carlo simulations together with Latin hypercube sampling is then used to assess the robustness of the frictional damper, whose contact parameters involve much uncertainties due to manufacturing tolerance and also wear effects. The influences of those two parameters are obtained, and the best performances of the frictional damper can be achieved when the contact angle is around 25 deg–30 deg. The vertical position of the platform is highly mode dependent, and other design considerations need to be accounted. The results have proved that the uncertainties that involved contact surfaces do not have significant effects on the performance of frictional damper.

References

1.
Yuan
,
J.
,
Scarpa
,
F.
,
Titurus
,
B.
,
Allegri
,
G.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Novel Frame Model for Mistuning Analysis of Bladed Disk Systems
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031016
. 10.1115/1.4036110
2.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2016
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
. 10.1007/s11831-016-9183-2
3.
Sinha
,
A.
, and
Trikutam
,
K. T.
,
2017
, “
Optimal Vibration Absorber With a Friction Damper
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021015
. 10.1115/1.4038272
4.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J. S.
, and
Schwingshackl
,
C. W.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
(
15
), pp.
662
679
. 10.1016/j.ymssp.2016.09.007
5.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
(
8
), pp.
327
340
. 10.1016/j.jsv.2018.08.014
6.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May
.
7.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2002
, “
Optimization of the Contact Geometry Between Turbine Blades and Underplatform Dampers With Respect to Friction Damping
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June
.
8.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2016
, “
Pre-Optimization of Asymmetrical Underplatform Dampers
,”
ASME J. Eng. Gas Turb. Power
,
139
(
1
), p.
012504
. 10.1115/1.4034191
9.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
Best Practices for Underplatform Damper Designers
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
7
), pp.
1221
1235
. 10.1177/0954406217753654
10.
Krylov
,
N.
, and
Bogoliubov
,
N.
,
1943
,
Introduction to Non-Linear Mechanics
(Annals of Mathematics Studies. No. 11),
Princeton University Press
,
Princeton, NJ
.
11.
Urabe
,
M.
,
1965
, “
Galerkin’s Procedure for Nonlinear Periodic Systems
,”
Arch. Rational Mech. Anal.
,
20
(
2
), pp.
120
152
. 10.1007/BF00284614
12.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
. 10.1115/1.3176036
13.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems—On the Use of the Harmonic Balance Methods,”
Advances in Vibration Analysis Research
,
F.
Ebrahimi
, ed.,
InTech
,
Rijeka
, Chap. 21.
14.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
. 10.1115/1.3643948
15.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
. 10.1016/0022-460X(91)90412-D
16.
Laxalde
,
D.
,
Salles
,
L.
,
Blanc
,
L.
, and
Thouverez
,
F.
,
2008
, “
Non-Linear Modal Analysis for Bladed Disks With Friction Contact Interfaces
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June
.
17.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
(
1
), pp.
59
71
. 10.1016/j.compstruc.2015.03.008
18.
Jahn
,
M.
,
Tatzko
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Comparison of Different Harmonic Balance Based Methodologies for Computation of Nonlinear Modes of Non-Conservative Mechanical Systems
,”
Mech. Syst. Signal Process.
,
127
(
15
), pp.
159
171
. 10.1016/j.ymssp.2019.03.005
19.
Petrov
,
E. P.
,
2007
, “
A Sensitivity-Based Method for Direct Stochastic Analysis of Nonlinear Forced Response for Bladed Discs With Friction Interfaces
,”
ASME J. Eng. Gas Turb. Power
,
130
(
2
), p.
022503
. 10.1115/1.2772634
20.
Krack
,
M.
,
Panning
,
L.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2012
, “
Robust Design of Friction Interfaces of Bladed Disks With Respect to Parameter Uncertainties
,”
ASME
Paper No. GT2012-68578
.
21.
Krack
,
M.
,
Tatzko
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2014
, “
Reliability Optimization of Friction-Damped Systems Using Nonlinear Modes
,”
J. Sound Vib.
,
333
(
13
), pp.
2699
2712
. 10.1016/j.jsv.2014.02.008
22.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
. 10.1080/01621459.1949.10483310
23.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
. 10.1016/j.ress.2007.04.002
24.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
. 10.1016/j.ejor.2007.10.013
25.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
26.
Yuan
,
J.
,
Allegri
,
G.
,
Scarpa
,
F.
,
Rajasekaran
,
R.
, and
Patsias
,
S.
,
2015
, “
Novel Parametric Reduced Order Model for Aeroengine Blade Dynamics
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
235
253
. 10.1016/j.ymssp.2015.02.015
27.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
28.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2013
, “
A Method for Nonlinear Modal Analysis and Synthesis: Application to Harmonically Forced and Self-Excited Mechanical Systems
,”
J. Sound Vib.
,
332
(
25
), pp.
6798
6814
. 10.1016/j.jsv.2013.08.009
29.
Przemieniecki
,
J.
,
1985
,
Theory of Matrix Structural Analysis
,
Dover Civil and Mechanical Engineering
,
Dover
.
30.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
. 10.2514/3.4741
31.
Yuan
,
J.
,
El-Haddad
,
F.
,
Salles
,
L.
, and
Wong
,
C.
,
2019
, “
Numerical Assessment of Reduced Order Modeling Techniques for Dynamic Analysis of Jointed Structures With Contact Nonlinearities
,”
ASME J. Eng. Gas Turb. Power
,
141
(
3
), p.
031027
. 10.1115/1.4041147
32.
Eriten
,
M.
,
Polycarpou
,
A.
, and
Bergman
,
L.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
. 10.1016/j.ijsolstr.2011.01.028
33.
Vakis
,
A.
,
Yastrebov
,
V.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
,
Paggi
,
M.
,
Lee
,
S.
,
Limbert
,
G.
,
Molinari
,
J.
,
Anciaux
,
G.
,
Aghababaei
,
R.
,
Restrepo
,
S. E.
,
Papangelo
,
A.
,
Cammarata
,
A.
,
Nicolini
,
P.
,
Putignano
,
C.
,
Carbone
,
G.
,
Stupkiewicz
,
S.
,
Lengiewicz
,
J.
,
Costagliola
,
G.
,
Bosia
,
F.
,
Guarino
,
R.
,
Pugno
,
N.
,
Müser
,
M.
, and
Ciavarella
,
M.
,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
, pp.
169
199
. 10.1016/j.triboint.2018.02.005
34.
Yang
,
B. D.
,
Chu
,
M. L.
, and
Menq
,
C. H.
,
1998
, “
Stick-Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load
,”
J. Sound Vib.
,
210
(
4
), pp.
461
481
. 10.1006/jsvi.1997.1305
35.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
. 10.1115/1.1539868
36.
Baudin
,
M.
,
Dutfoy
,
A.
,
Iooss
,
B.
, and
Popelin
,
A.-L.
,
2016
, “Openturns: An Industrial Software for Uncertainty Quantification in Simulation,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer International Publishing
,
Cham
, pp.
1
38
.
You do not currently have access to this content.