The inevitable manufacturing errors of rotational machineries cause vibration of multifrequency. This paper presents a multidynamic vibration absorber (MDVA) to suppress the vibration of multifrequency. The MDVA consists of two parts, and each part includes three dynamic vibration absorbers (DVAs) with equal mass but different stiffness values. In order to improve the robustness of the system, an optimization method to obtain the optimal damping values of each DVA is proposed based on dynamic response. The objective function of optimization aims to flatten the frequency response of the primary system with the changeable excitation and reduce the vibration level in a limited frequency bandwidth. The multifrequency vibration suppression is experimentally verified. To achieve the optimal damping values, the magnetic dampers are applied in the tests. The experimental results indicate that the sensitivity of the system is reduced and the robustness of the system is enhanced, which are coincident with the simulations.

References

1.
Inamori
,
T.
,
Wang
,
J.
,
Saisutjarit
,
P.
, and
Nakasuka
,
S.
,
2013
, “
Jitter Reduction of a Reaction Wheel by Management of Angular Momentum Using Magnetic Torquers in Nano-and Micro-Satellites
,”
Adv. Space Res.
,
52
(
1
), pp.
222
231
.
2.
Villa
,
L. F.
,
Reñones
,
A.
,
Perán
,
J. R.
, and
De Miguel
,
L. J.
,
2011
, “
Angular Resampling for Vibration Analysis in Wind Turbines Under Non-Linear Speed Fluctuation
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2157
2168
.
3.
Hunt
,
J. B.
,
1979
,
Dynamic Vibration Absorbers
,
Mechanical Engineering Publications
,
London
.
4.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Courier Corporation
,
New York
.
5.
Korenev
,
B. G.
, and
Reznikov
,
L. M.
,
1993
,
Dynamic Vibration Absorbers: Theory and Technical Applications
,
Wiley
,
New York
.
6.
Nagaya
,
K.
,
Kurusu
,
A.
,
Ikai
,
S.
, and
Shitani
,
Y.
,
1999
, “
Vibration Control of a Structure by Using a Tunable Absorber and an Optimal Vibration Absorber Under Auto-Tuning Control
,”
J. Sound Vib.
,
228
(
4
), pp.
773
792
.
7.
Liu
,
J.
, and
Liu
,
K.
,
2006
, “
A Tunable Electromagnetic Vibration Absorber: Characterization and Application
,”
J. Sound Vib.
,
295
(
3
), pp.
708
724
.
8.
Lin
,
J.
, and
Liu
,
W. Z.
,
2006
, “
Experimental Evaluation of a Piezoelectric Vibration Absorber Using a Simplified Fuzzy Controller in a Cantilever Beam
,”
J. Sound Vib.
,
296
(
3
), pp.
567
582
.
9.
Nambu
,
Y.
,
Takashima
,
T.
, and
Inagaki
,
A.
,
2015
, “
Robust Design Method and Thermostatic Experiment for Multiple Piezoelectric Vibration Absorber System
,”
Smart Mater. Struct.
,
24
(
12
), p.
125016
.
10.
Williams
,
K. A.
,
Chiu
,
G. C.
, and
Bernhard
,
R. J.
,
2005
, “
Dynamic Modelling of a Shape Memory Alloy Adaptive Tuned Vibration Absorber
,”
J. Sound Vib.
,
280
(
1
), pp.
211
234
.
11.
Mani
,
Y.
, and
Senthilkumar
,
M.
,
2015
, “
Shape Memory Alloy-Based Adaptive-Passive Dynamic Vibration Absorber for Vibration Control in Piping Applications
,”
J. Vib. Control
,
21
(
9
), pp.
1838
1847
.
12.
Lee
,
H. S.
, and
Choi
,
S. B.
,
2000
, “
Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles
,”
J. Intell. Mater. Syst. Struct.
,
11
(
1
), pp.
80
87
.
13.
Sun
,
S.
,
Deng
,
H.
,
Yang
,
J.
,
Li
,
W.
,
Du
,
H.
,
Alici
,
G.
, and
Nakano
,
M.
,
2015
, “
An Adaptive Tuned Vibration Absorber Based on Multilayered MR Elastomers
,”
Smart Mater. Struct.
,
24
(
4
), p.
045045
.
14.
Xu
,
K.
, and
Igusa
,
T.
,
1992
, “
Dynamic Characteristics of Multiple Substructures With Closely Spaced Frequencies
,”
Earthquake Eng. Struct. Dyn.
,
21
(
12
), pp.
1059
1070
.
15.
Yamaguchi
,
H.
, and
Harnpornchai
,
N.
,
1993
, “
Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations
,”
Earthquake Eng. Struct. Dyn.
,
22
(
1
), pp.
51
62
.
16.
Wang
,
X.
,
Yang
,
B.
,
You
,
J.
, and
Gao
,
Z.
,
2016
, “
Coarse-Fine Adaptive Tuned Vibration Absorber With High Frequency Resolution
,”
J. Sound Vib.
,
383
, pp.
46
63
.
17.
Igusa
,
T.
, and
Xu
,
K.
,
1990
, “
Wide-Band Response Characteristics of Multiple Subsystem With High Modal Density
,”
2nd International Conference Stochastic Structural Dynamics
, Boca Raton, FL, May 9–11.
18.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2005
, “
Optimization of the Individual Stiffness and Damping Parameters in Multiple-Tuned-Mass-Damper Systems
,”
ASME J. Vib. Acoust.
,
127
(
1
), pp.
77
83
.
19.
Yang
,
Y.
,
Munoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
834
842
.
20.
Li
,
H. N.
, and
Ni
,
X. L.
,
2007
, “
Optimization of Non-Uniformly Distributed Multiple Tuned Mass Damper
,”
J. Sound Vib.
,
308
(
1
), pp.
80
97
.
21.
Jangid
,
R. S.
,
1999
, “
Optimum Multiple Tuned Mass Dampers for Base-Excited Undamped System
,”
Earthquake Eng. Struct. Dyn.
,
28
(
9
), pp.
1041
1049
.
22.
Bakre
,
S. V.
, and
Jangid
,
R. S.
,
2004
, “
Optimum Multiple Tuned Mass Dampers for Base-Excited Damped Main System
,”
Int. J. Struct. Stab. Dyn.
,
4
(
4
), pp.
527
542
.
23.
Sinha
,
A.
,
2015
, “
Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
064501
.
24.
Asami
,
T.
,
2017
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Arranged in Series or in Parallel
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011015
.
25.
Cunefare
,
K. A.
,
De Rosa
,
S.
,
Sadegh
,
N.
, and
Larson
,
G.
,
2000
, “
State-Switched Absorber for Semi-Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
300
310
.
26.
Sun
,
H. L.
,
Zhang
,
P. Q.
,
Chen
,
H. B.
,
Zhang
,
K.
, and
Gong
,
X. L.
,
2008
, “
Application of Dynamic Vibration Absorbers in Structural Vibration Control Under Multi-Frequency Harmonic Excitations
,”
Appl. Acoust.
,
69
(
12
), pp.
1361
1367
.
27.
Seto
,
K.
,
2010
,
Dynamic Vibration Absorber and Its Applications (in Japanese)
,
Corona
,
Tokyo, Japan
.
You do not currently have access to this content.