A preliminary exploration is carried out of the utility of the Groebner basis method for implementing the harmonic balance analysis of nonlinear steady state vibrations. The method is found to be worthy of further investigation.

References

1.
Cochelin
,
B.
, and
Vergez
,
C.
,
2009
, “
A High Order Purely Frequency-Based Harmonic Balance Formulation for Continuation of Periodic Solutions
,”
J. Sound Vib.
,
324
, pp.
243
262
.10.1016/j.jsv.2009.01.054
2.
Guskov
,
M.
, and
Thouverez
,
F.
,
2012
, “
Harmonic Balance-Based Approach for Quasi-Periodic Motions and Stability Analysis
,”
ASME J. Vibr. Acoust.
,
134
(
3
), p.
031003
.10.1115/1.4005823
3.
Grolet
,
A.
, and
Thouverez
,
F.
,
2012
, “
Free and Forced Vibration Analysis of a Nonlinear System With Cyclic Symmetry: Application to a Simplified Model
,”
J. Sound Vib.
,
331
, pp.
2911
2928
.10.1016/j.jsv.2012.02.008
4.
Stanton
,
S.
,
Owens
,
B.
, and
Mann
,
B.
,
2012
, “
Harmonic Balance Analysis of the Bistable Piezoelectric Inertial Generator
,”
J. Sound Vib.
,
331
, pp.
3617
3627
.10.1016/j.jsv.2012.03.012
5.
Peng
,
Z.
,
Meng
,
G.
,
Lang
,
Z.
,
Zhang
,
W.
, and
Chu
,
F.
,
2012
, “
Study of the Effects of Cubic Nonlinear Damping on Vibration Isolations Using Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
47
, pp.
1073
1080
.10.1016/j.ijnonlinmec.2011.09.013
6.
Alvarez
,
J.
,
Meraz
,
M.
,
Valdes-Parada
,
F.
, and
Alvarez-Ramirez
,
J.
,
2012
, “
First-Harmonic Balance Analysis for Fast Evaluation of Periodic Operation of Chemical Processes
,”
Chem. Eng. Sci.
,
74
, pp.
256
265
.10.1016/j.ces.2012.02.048
7.
Peng
,
Z.
,
Lang
,
Z.
, and
Billings
,
S.
,
2007
, “
Resonances and Resonant Frequencies for a Class of Nonlinear Systems
,”
J. Sound Vib.
,
300
, pp.
993
1014
.10.1016/j.jsv.2006.09.012
8.
Hironaka
,
H.
,
1964
, “
Resolution of Singularities on an Algebraic Variety Over a Field of Characteristic Zero: I
,”
Ann. Math.
,
79
(
1
), pp.
109
203
.10.2307/1970486
9.
Hironaka
,
H.
,
1964
, “
Resolution of Singularities on an Algebraic Variety Over a Field of Characteristic Zero: II
,”
Ann. Math.
,
79
(
2
), pp.
205
326
.10.2307/1970547
10.
Buchberger
,
B.
,
1965
, “
An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal
,” Ph.D. thesis, University of Innsbruck, Innsbruck, Austria (in German).
11.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties, and Algorithms
, 3rd ed.,
Springer
,
New York
.
12.
Jacobsen
,
L.
, and
Ayre
,
R.
,
1958
,
Engineering Vibrations
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.