In the present paper, the performance of Biot's theory is investigated for wave propagation in cellular and porous solids with entrained fluid for configurations with well-known drained (no fluid) mechanical properties. Cellular solids differ from porous solids based on their relative density ρ*<0.3. The distinction is phenomenological and is based on the applicability of beam (or plate) theories to describe microstructural deformations. The wave propagation in a periodic square lattice is analyzed with a finite-element model, which explicitly considers fluid-structure interactions, structural deformations, and fluid-pressure variations. Bloch theorem is employed to enforce symmetry conditions of a representative volume element and obtain a relation between frequency and wavevector. It is found that the entrained fluid does not affect shear waves, beyond added-mass effects, so long as the wave spectrum is below the pores' natural frequency. One finds strong dispersion in cellular solids as a result of resonant scattering, in contrast to Bragg scattering dominant in porous media. Configurations with 0.0001ρ*1 are investigated. One finds that Biot's theory, derived from averaged microstructural quantities, well estimates the phase velocity of pressure and shear waves for cellular porous solids, except for the limit ρ*1. For frequencies below the first resonance of the lattice walls, only the fast-pressure mode of the two modes predicted by Biot's theory is found. It is also shown that homogenized models for shear waves based on microstructural deformations for drained conditions agree with Biot's theory.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties (Cambridge Solid State Science Series)
,
Cambridge University
,
Cambridge, UK
.
2.
Kumar
,
R. S.
, and
McDowell
,
D. L.
,
2004
, “
Generalized Continuum Modeling of 2-D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.10.1016/j.ijsolstr.2004.06.038
3.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2011
, “
Elasto-Static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
, pp.
156
171
.10.1016/j.jmps.2011.09.012
4.
Suiker
,
A. J.
,
Metrikine
,
A. V.
, and
De Borst
,
R.
,
2001
, “
Comparison of Wave Propagation Characteristics of the Cosserat Continuum Model and Corresponding Discrete Lattice Models
,”
Int. J. Solids Struct.
,
38
(
9
), pp.
1563
1583
.10.1016/S0020-7683(00)00104-9
5.
Eringen
,
A. C.
,
2001
,
Microcontinuum Field Theories: I. Foundations and Solids (Microcontinuum Field Theories)
,
Springer
,
New York
.
6.
Martinsson
,
P. G.
, and
Movchan
,
A. B.
,
2003
, “
Vibrations of Lattice Structures and Phononic Band Gaps
,”
Q. J. Mech. Appl. Math.
,
56
(
1
), pp.
45
64
.10.1093/qjmam/56.1.45
7.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.10.1121/1.2179748
8.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Homogenization and Equivalent In-Plane Properties of Two-Dimensional Periodic Lattices
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2897
2915
.10.1016/j.ijsolstr.2008.01.002
9.
Mead
,
D. M.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.10.1006/jsvi.1996.0076
10.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
(
1
), pp.
125
139
.10.1016/j.jsv.2007.10.033
11.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.10.1016/j.wavemoti.2009.04.002
12.
Casadei
,
F.
, and
Rimoli
,
J. J.
,
2013
, “
Anisotropy-Induced Broadband Stress Wave Steering in Periodic Lattices
,”
Int. J. Solids Struct.
,
50
, pp.
1402
1414
.10.1016/j.ijsolstr.2013.01.015
13.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
.10.1088/0964-1726/12/3/307
14.
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2011
, “
Wave Propagation Characterization and Design of Two-Dimensional Elastic Chiral Metacomposite
,”
J. Sound Vib.
,
330
(
11
), pp.
2536
2553
.10.1016/j.jsv.2010.12.014
15.
Xu
,
Y. L.
,
Tian
,
X. G.
, and
Chen
,
C. Q.
,
2012
, “
Band Structures of Two Dimensional Solid/Air Hierarchical Phononic Crystals
,”
Physica B: Condens. Matter
,
407
(
12
), pp.
1995
2001
.10.1016/j.physb.2012.01.127
16.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(2), pp.
168
178
.10.1121/1.1908239
17.
Allard
,
J.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed.,
Wiley
,
New York
.
18.
Carcione
,
J.
,
2007
,
Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Handbook of Geophysical Exploration: Seismic Exploration)
,
Elsevier Science
,
New York
.
19.
Auriault
,
J. L.
, and
Sanchez-Palencia
,
E.
,
1977
, “
Etude du Comportement Macroscopique d'un Milieu Poreux Saturé Déformable
,”
J. Méc.
,
16
(
4
), pp.
575
603
.
20.
Burridge
,
R.
, and
Keller
,
J. B.
,
1981
, “
Poroelasticity Equations Derived From Microstructure
,”
J. Acoust. Soc. Am.
,
70
(4), pp.
1140
1146
.10.1121/1.386945
21.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
A Reformulation of the Equations of Anisotropic Poroelasticity
,”
ASME J. Appl. Mech.
,
58
, p.
612
616
.10.1115/1.2897239
22.
Cheng
,
A. H.-D.
,
1997
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
2
), pp.
199
205
.10.1016/S0148-9062(96)00055-1
23.
Dormieux
,
L.
,
Molinari
,
A.
, and
Kondo
,
D.
,
2002
, “
Micromechanical Approach to the Behavior of Poroelastic Materials
,”
J. Mech. Phys. Solids
,
50
(
10
), pp.
2203
2231
.10.1016/S0022-5096(02)00008-X
24.
Chekkal
,
I.
,
Remillat
,
C.
, and
Scarpa
,
F.
,
2012
, “
Acoustic Properties of Auxetic Foams
,”
High Performance Structures and Materials VI
,
WIT Press, Ashurst, UK
, pp.
119
130
.
25.
Gueven
,
I.
,
Kurzeja
,
P.
,
Luding
,
S.
, and
Steeb
,
H.
,
2012
, “
Experimental Evaluation of Phase Velocities and Tortuosity in Fluid Saturated Highly Porous Media
,”
PAMM
,
12
(
1
), pp.
401
402
.10.1002/pamm.201210189
26.
Chevillotte
,
F.
,
Perrot
,
C.
, and
Panneton
,
R.
,
2010
, “
Microstructure Based Model for Sound Absorption Predictions of Perforated Closed-Cell Metallic Foams
,”
J. Acoust. Soc. Am.
,
128
(4), pp.
1766
1776
.10.1121/1.3473696
27.
Perrot
,
C.
,
Chevillotte
,
F.
, and
Panneton
,
R.
,
2008
, “
Bottom-Up Approach for Microstructure Optimization of Sound Absorbing Materials
,”
J. Acoust. Soc. Am.
,
124
(2), pp.
940
948
10.1121/1.2945115.
28.
Cook
,
R.
,
2001
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
29.
Kittel
,
C.
,
2004
,
Introduction to Solid State Physics
,
Wiley
,
New York.
30.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices (Dover Phoenix Editions)
,
Dover
,
New York
.
31.
Bažant
,
Z. P.
, and
Christensen
,
M.
,
1972
, “
Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress
,”
Int. J. Solids Struct.
,
8
(
3
), pp.
327
346
.10.1016/0020-7683(72)90093-5
32.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(2), pp.
179
191
.10.1121/1.1908241
33.
Brutsaert
,
W.
,
1964
, “
The Propagation of Elastic Waves in Unconsolidated Unsaturated Granular Mediums
,”
J. Geophys. Res.
,
69
(
2
), pp.
243
257
.10.1029/JZ069i002p00243
34.
Santos
,
J. E.
,
Douglas
, Jr.,
J.
,
Corberó
,
J.
, and
Lovera
,
O. M.
,
1990
, “
A Model for Wave Propagation in a Porous Medium Saturated by a Two-Phase Fluid
,”
J. Acoust. Soc. Am.
,
87
(4), pp.
1439
1448
.10.1121/1.399440
35.
Carcione
,
J. M.
,
Cavallini
,
F.
,
Santos
,
J. E.
,
Ravazzoli
,
C. L.
, and
Gauzellino
,
P. M.
,
2004
, “
Wave Propagation in Partially Saturated Porous Media: Simulation of a Second Slow Wave
,”
Wave Motion
,
39
(
3
), pp.
227
240
.10.1016/j.wavemoti.2003.10.001
36.
Biot
M. A.
, and
Willis
,
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME J. Appl. Mech.
,
24
(
4
), pp.
594
601
.
37.
Stadler
,
M.
, and
Schanz
,
M.
,
2010
, “
Acoustic Band Structures and Homogenization of Periodic Elastic Media
,”
PAMM
,
10
(
1
), pp.
427
428
.10.1002/pamm.201010206
38.
Yavari
,
B.
, and
Bedford
,
A.
,
1991
, “
Comparison of Numerical Calculations of Two Biot Coefficients With Analytical Solutions
,”
J. Acoust. Soc. Am.
,
90
(2), pp.
985
990
.10.1121/1.401912
You do not currently have access to this content.