This paper is aimed at investigating the influence of nonviscous modes on the vibrational response of viscoelastic systems. Thus, exponential damping models are considered. Provided that nonviscous modes disappear with time, they have influence on only the transient response of the system. Thus, the system response is obtained by means of modal superposition in order to examine the contribution of each mode. The analysis is carried out on two lumped parameter systems; systems involving a single degree and three degrees of freedom are studied. For the former, the analytic solution is derived via modal superposition and Laplace transformation. For the latter, the analytic response is contrasted with that provided via two numerical direct methods. From this investigation, it can be concluded that the system may present no oscillations, even if elastic modes are underdamped modes.

References

1.
Banea
,
M.
, and
Da Silva
,
L.
, 2009, “
Mechanical Characterization of Flexible Adhesives
,”
J. Adhesion
,
85
, pp.
261
285
.
2.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
,
John Wiley & Sons
,
New York
.
3.
Cortés
,
F.
, 2006, “
Dynamic Analysis of Systems With Viscoelastic Damping
,” Ph.D. thesis, Mondragon Unibertsitatea, Spain.
4.
Bert
,
C.
, 1973, “
Material Damping: An Introductory Review of Mathematical Measures and Experimental Techniques
,”
J. Sound Vib.
,
29
, pp.
129
153
.
5.
Gaul
,
L.
, and
Schmidt
,
A.
, 2007, “
Experimental Determination and Modeling of Material Damping
,”
VDI-Ber.
,
2003
, pp.
17
40
.
6.
Boltzmann
,
L.
, 1876, “
Zur Theorie der elastischen Nachwirkung
,”
Pogg. Ann. Phys. Chem.
,
7
, pp.
624
654
.
7.
Adhikari
,
S.
, 2000, “
Damping Models for Structural Vibration
,” Ph.D. thesis, Cambridge University, Cambridge, UK.
8.
Adhikari
,
S.
, 2001, “
Classical Normal Modes in Non-viscously Damped Linear Systems
,”
AIAA J.
,
39
(
5
), pp.
1
3
.
9.
Adhikari
,
S.
, 2008, “
Dynamic Response Characteristics of a Non-viscously Damped Oscillator
,”
ASME Trans. J. Appl. Mech.
,
75
(
1
), pp.
1
12
.
10.
Adhikari
,
S.
, 2002, “
Dynamics of Non-viscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
(
3
), pp.
328
339
.
11.
Adhikari
,
S.
, 2005, “
Qualitative Dynamic Characteristics of a Non-viscously Damped Oscillator
,”
Proc. R. Soc. London
,
461
, pp.
2269
2288
.
12.
Nashif
,
A. D.
,
Jones
,
D. I. G.
, and
Henderson
,
J. P.
, 1985,
Vibration Damping
,
John Wiley & Sons
,
New York
.
13.
Balmès
,
E.
,
Mathieu
,
C.
, and
Sylvain
,
G.
, 2006, “
Model Validation for Heavily Damped Structures. Application to a Windshield Joint
,” Proceedings of ISMA 2006, Leuven, September.
14.
Balmès
,
E.
, and
Bobillot
,
A.
, 2002, “
Analysis and Design Tools for Structures Damped by Viscoelastic Materials
,” Proceedings of the 20th International Modal Analysis Conference, Los Angeles, CA, February.
15.
Golla
,
D. F.
, and
Hughes
,
P. C.
, 1985, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME Trans. J. Appl. Mech.
,
52
, pp.
897
906
.
16.
McTavis
,
D. J.
, and
Hughes
,
P. C.
, 1993, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
,
115
(
1
), pp.
103
110
.
17.
Lesieutre
,
A.G.
, 1995, “
Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields
,”
ASME J. Vibr. Acoust.
,
117
(
4
), pp.
424
430
.
18.
Wagner
,
N.
, and
Adhikari
,
S.
, 2003, “
Symmetric State-Space Method for a Class of Non-viscously Damped Systems
,”
AIAA J.
,
41
(
5
), pp.
951
955
.
19.
Cortés
,
F.
,
Mateos
,
M.
, and
Elejabarrieta
,
M. J.
, 2008, “
A Direct Integration Formulation for Exponentially Damped Structural Systems
,”
Comput. Struct.
,
87
, pp.
391
394
.
20.
Adhikari
,
S.
, and
Wagner
,
N.
, 2004, “
Direct Time-Domain Integration Method for Exponentially Damped Linear Systems
,”
Comput. Struct.
,
82
, pp.
2453
2461
.
21.
Adhikari
,
S.
, and
Pascual
,
B.
, 2011, “
Iterative Methods for Viscoelastic Systems
,”
ASME J. Vibr. Acoust.
,
133
,
021002
.
22.
Abramowitz
,
M.
, 1965,
Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables
,
Courier
,
New York
.
23.
Muller
,
P.
, 2005, “
Are the Eigensolutions of a 1-d.o.f. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
,
285
, pp.
501
509
.
You do not currently have access to this content.