A finite element formulation is developed for solving the problem related to thermoelastic damping in beam resonator systems. The perturbation analysis on the governing equations of heat conduction, thermoleasticity, and dynamic motion leads to a linear eigenvalue equation for the exponential growth rate of temperature, displacement, and velocity. The numerical solutions for a simply supported beam have been obtained and shown in agreement with the analytical solutions found in the literature. Parametric studies on a variety of geometrical and material properties demonstrate their effects on the frequency and the quality factor of resonance. The finite element formulation presented in this work has advantages over the existing analytical approaches in that the method can be easily extended to general geometries without extensive computations associated with the numerical iterations and the analytical expressions of the solution under various boundary conditions.

1.
Roszhart
,
T. V.
, 1990, “
The Effect of Thermoelastic Internal Friction on the Q of Micromachined Silicon Resonators
,”
Proceeding IEEE Solid-State Sensors Actuator Workshop, 4th Technical Digest
,
IEEE
,
Hilton Head Island, SC
, June 4–7, 1990, pp.
13
16
.
2.
Evoy
,
S.
,
Olkhovets
,
A.
,
Sekaric
,
L.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
Carr
,
D. W.
, 2000, “
Temperature-Dependent Internal Friction in Silicon Nanoelectromechanical Systems
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
2397
2399
.
3.
Abdolvand
,
R.
,
Ho
,
G. K.
,
Erbil
,
A.
, and
Ayazi
,
F.
, 2003, “
Thermoelastic Damping in Trench-Refilled Polysilicon Resonators
,”
Proceedings Transducers ’03 Digest of Technical Papers
, Boston, Vol.
1
, June 8–12, pp.
324
327
.
4.
Lifshitz
,
R.
, and
Roukes
,
M. L.
, 2000, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
0163-1829,
61
, pp.
5600
5609
.
5.
Zener
,
C.
, 1937, “
Internal Friction in Solids, I: Theory of Internal Friction in Reeds
,”
Phys. Rev.
0031-899X,
52
, pp.
230
235
.
6.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
Modeling and Simulations of Thermoelastic Damping in Microplates
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1711
1717
.
7.
Wong
,
S. J.
,
Fox
,
C. H. J.
, and
McWilliam
,
S.
, 2006, “
Thermoelastic Damping of the In-plane Vibration of Thin Silicon Rings
,”
J. Sound Vib.
0022-460X,
293
, pp.
266
285
.
8.
Duwel
,
A.
,
Gorman
,
J.
,
Weinstein
,
M.
,
Borenstein
,
J.
, and
Ward
,
P.
, 2003, “
Experimental Study of Thermoelastic Damping in MEMS Gyros
,”
Sens. Actuators, A
0924-4247,
103
, pp.
70
75
.
9.
Sun
,
Y.
,
Fang
,
D.
, and
Soh
,
A. K.
, 2006, “
Thermoelastic Damping in Micro-beam Resonators
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
3213
3229
.
10.
Silver
,
M. J.
, and
Peterson
,
L. D.
, 2005, “
Predictive Elastothermodynamic Damping in Finite Element Models by Using a Perturbation Formulation
,”
AIAA J.
0001-1452,
43
, pp.
2646
2653
.
11.
Segalman
,
D. J.
, 1987, “
Calculation of Damping Matrices for Linearly Viscoelastic Structures
,”
J. Appl. Mech.
0021-8936,
54
, pp.
585
588
.
12.
Glaser
,
S.
, 1998,
Gekoppelte thermomechanische Berechnung dünnwandiger Strukturen mit der Methode der Finiten Elemente
, Habilitationsschrift,
Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart Press
,
Stuttgart, Germany
(in German).
13.
Yi
,
Y. B.
,
Barber
,
J. R.
, and
Zagrodzki
,
P.
, 2000, “
Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
2799
2821
.
14.
Yi
,
Y. B.
, 2006, “
Finite Element Analysis on Thermoelastodynamic Instabilities Involving Frictional Heating
,”
ASME J. Tribol.
0742-4787,
128
, pp.
718
724
.
You do not currently have access to this content.