The free and forced vibration of a moving medium is examined in an application where distributed friction guiding is used to control lateral position passively. Subambient pressure features formed in the guides intentionally modify the naturally occurring self-pressurized air bearing and increase the contact force between the medium and the guide’s surface. These features increase friction to a level beyond that achievable based on the nominal wrap pressure. The moving medium is modeled as a beam that is transported over frictional regions and subjected to prescribed boundary disturbances arising from runout of a supply or take-up roll. For axial transport at a speed that is high compared to the velocity of lateral vibration, Coulomb friction between the guides and the moving medium can be well approximated by a derived expression for equivalent viscous damping. The equation of motion is developed for the cases of a single cylindrical guide and of a multiplicity of guides having arbitrary placement. The level of equivalent damping for each mode decreases with transport speed, and critical speeds exist where each vibration mode transitions between the overdamped and underdamped regimes. Parameter studies in the contact pressure, transport speed, and guide geometry identify preferred design configurations for maximizing dissipation in particular modes and for attenuating high-frequency response.

1.
Hinteregger
,
H.
, and
Müftü
,
S.
, 1996, “
Contact Tape Recording With a Flat Head Contour
,”
IEEE Trans. Magn.
0018-9464,
32
, pp.
3476
3478
.
2.
Wickert
,
J. A.
, 1993, “Free Linear Vibration of Self-Pressurized Foil Bearings,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
145
151
.
3.
Müftü
,
S.
, and
Benson
,
R. C.
, 1996, “
A Study of Cross-Width Variations in the Two-Dimensional Foil Bearing Problem
,”
ASME J. Tribol.
0742-4787,
118
, pp.
407
414
.
4.
Heinrich
,
J. C.
, and
Connolly
,
D.
, 1992, “
Three-Dimensional Finite Element Analysis of Self-Acting Foil Bearings
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
100
, pp.
31
43
.
5.
Lakshmikumaran
,
A. V.
, and
Wickert
,
J. A.
, 1999, “
Equilibrium Analysis of Finite Width Tension Dominated Foil Bearings
,”
ASME J. Tribol.
0742-4787,
121
, pp.
108
113
.
6.
Sun
,
J.-H.
, and
Fung
,
R.-F.
, 2003, “
A New Dynamic Modelling of the Magnetic Tape Recording System
,”
J. Sound Vib.
0022-460X,
259
(
3
), pp.
637
648
.
7.
Zwettler
,
C. J.
,
Fahimi
,
S. A.
,
Mewes
,
M. A.
, and
Johnson
,
D. W.
, 2005, “
Data Storage Tape Cartridge With Sub-Ambient Pressure Feature
,” U.S. Patent No. 6,874,720.
8.
Ono
,
K.
, 1979, “
Lateral Motion of an Axially Moving String on a Cylindrical Guide Surface
,”
ASME J. Appl. Mech.
0021-8936,
46
(
4
), pp.
905
912
.
9.
Yang
,
R. J.
, 1994, “
Steady Motion of a Thread Over a Rotating Roller
,”
ASME J. Appl. Mech.
0021-8936,
61
(
1
), pp.
16
22
.
10.
Schajer
,
G. S.
, 1984, “
The Vibration of a Rotating Circular String Subject to a Fixed Elastic Restraint
,”
J. Sound Vib.
0022-460X,
92
(
1
), pp.
11
19
.
11.
Afolabi
,
D.
, 1997, “
Stability of a Translating Beam With Fixed and Moving Viscous Damping
,”
J. Sound Vib.
0022-460X,
199
(
4
), pp.
701
703
.
12.
Garziera
,
R.
, and
Amabili
,
M.
, 2000, “
Damping Effect of Winding on the Lateral Vibrations of Axially Moving Tapes
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
1
), pp.
49
53
.
13.
Cheng
,
S.-P.
, and
Perkins
,
N. C.
, 1991, “
The Vibration and Stability of a Friction-Guided, Translating String
,”
J. Sound Vib.
0022-460X,
144
(
2
), pp.
281
292
.
14.
Zen
,
G.
, and
Müftü
,
S.
, 2006, “
Stability of an Axially Accelerating String Subjected to Frictional Guiding Forces
,”
J. Sound Vib.
0022-460X,
289
, pp.
551
576
.
15.
Chen
,
J.-S.
, 1997, “
Natural Frequencies and Stability of an Axially-Traveling String in Contact With a Stationary Load System
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
152
157
.
16.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
, 1990, “
Classical Vibration Analysis of Axially-Moving Continua
,”
ASME J. Appl. Mech.
0021-8936,
57
(
3
), pp.
738
744
.
17.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
, 1991, “
Traveling Load Response of an Axially-Moving String
,”
J. Sound Vib.
0022-460X,
149
(
2
), pp.
267
284
.
18.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
, 1991, “
Response and Discretization Methods for Axially-Moving Materials
,”
Appl. Mech. Rev.
0003-6900,
44
(
11
), pp.
279
284
.
19.
Kartik
,
V.
, and
Wickert
,
J. A.
, 2006, “
Vibration and Guiding of Moving Media With Edge Weave Imperfections
,”
J. Sound Vib.
0022-460X,
291
(
1–2
), pp.
419
436
.
20.
Chakraborty
,
G.
, and
Mallik
,
A. K.
, 1999, “
Non-Linear Vibration of a Travelling Beam Having an Intermediate Guide
,”
Nonlinear Dyn.
0924-090X,
20
(
3
), pp.
247
265
.
21.
Jha
,
R. K.
, and
Parker
,
R. G.
, 2000, “
Spatial Discretization of Axially-Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
290
294
.
22.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979, “
Nonlinear Oscillations
,”
Wiley
, New York, pp.
105
107
.
You do not currently have access to this content.