Dynamic analysis and parameter identification of a single mass elastomeric isolation system represented by a Maxwell-Voigt model is examined. Influences that the stiffness and damping values of the Maxwell element have on natural frequency, damping ratio, and frequency response are uncovered and three unique categories of Maxwell-type elements are defined. It is also shown that Voigt and Maxwell-Voigt models with equivalent natural frequencies and damping ratios can have considerably different frequency response spectra. Lastly, a parameter identification method is developed for identifying Maxwell-Voigt models from frequency response spectra. The method is based on constant natural frequency and damping ratio curves generated from modal analysis of potential Maxwell-Voigt models.

1.
Flügge
,
W.
, 1975,
Viscoelasticity
, 2nd ed.,
Springer-Verlag
,
New York
.
2.
Ravindra
,
B.
, and
Mallik
,
A. K.
, 1994, “
Performance of NonLinear Vibration Isolators Under Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
170
, pp.
325
337
.
3.
Lee
,
J. H.
, and
Kim
,
K. J.
, 2002, “
Treatment of Frequency-Dependent Complex Stiffness for Commercial Multi-Body Dynamic Analysis Programs
,”
Mech. Struct. Mach.
0890-5452,
30
(
4
), pp.
527
541
.
4.
Dejong
,
R. G.
,
Ermer
,
G. E.
,
Paydenkar
,
C. S.
, and
Remtema
,
T. M.
, 1998, “
High Frequency Dynamic Properties of Rubber Isolation Elements
,”
Proceedings of Noise-Con ’98
, pp.
383
390
.
5.
Thompson
,
D. J.
,
Van Vliet
,
W. J.
, and
Verheij
,
J. W.
, 1998, “
Developments of the Indirect Method for Measuring the High Frequency Dynamic Stiffness of Resilient Elements
,”
J. Sound Vib.
0022-460X,
213
(
1
), pp.
169
188
.
6.
Kim
,
S.
, and
Singh
,
R.
, 2001, “
Multi-Dimensional Characterization of Vibration Isolators over a Wide Range of Frequencies
,”
J. Sound Vib.
0022-460X,
245
, pp.
877
913
.
7.
Dickens
,
J. D.
, 2000, “
Phase Velocity of Rubber Element in Vibration Isolator Under Static Load
,”
J. Sound Vib.
0022-460X,
234
, pp.
21
42
.
8.
Dickens
,
J. D.
, 2000, “
Dynamic Model of Vibration Isolator Under Static Load
,”
J. Sound Vib.
0022-460X,
236
, pp.
323
337
.
9.
Kari
,
L.
, 2003, “
On the Dynamic Stiffness of Preloaded Vibration Isolators in the Audible Frequency Range: Modeling and Experiments
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
4
), pp.
1909
1921
.
10.
Li
,
W. L.
, and
Lavrich
,
P.
, 1998, “
Determination of Power Flows Through Vibration Isolators
,”
Proceedings of Noise-Con ’98
, pp.
377
382
.
11.
Kim
,
S.
, and
Singh
,
R.
, 2001, “
Vibration Transmission Through an Isolator Modeled by Continuous System Theory
,”
J. Sound Vib.
0022-460X,
248
, pp.
925
953
.
12.
Wang
,
L. R.
,
Lu
,
Z. H.
, and
Hagiwara
,
I.
, 2002, “
Finite Element Simulation of the Static Characteristics of a Vehicle Rubber Mount
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
216
(
12
), pp.
965
973
.
13.
Chandra Shekhar
,
N.
,
Hatwal
,
H.
, and
Mallik
,
A. K.
, 1998, “
Response of NonLinear Dissipative Shock Isolators
,”
J. Sound Vib.
0022-460X,
214
, pp.
589
603
.
14.
Chandra Shekhar
,
N.
,
Hatwal
,
H.
, and
Mallik
,
A. K.
, 1999, “
Performance of NonLinear Isolators and Absorbers to Shock Excitation
,”
J. Sound Vib.
0022-460X,
227
, pp.
293
307
.
15.
Kirk
,
C. L.
, 1988, “
NonLinear Random Vibration Isolators
,”
J. Sound Vib.
0022-460X,
124
, pp.
157
182
.
16.
Adiguna
,
H.
,
Tiwari
,
M.
,
Singh
,
R.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
, 2003, “
Transient Response of a Hydraulic Engine Mount
,”
J. Sound Vib.
0022-460X,
268
, pp.
217
248
.
17.
Richards
,
C. M.
, and
Singh
,
R.
, 1998, “
Identification of Nonlinear Properties of Rubber Isolators Using Experimental and Analytical Methods
,”
Proceedings of Noise-Con ’98
, pp.
391
396
.
18.
Richards
,
C. M.
, and
Singh
,
R.
, 2001, “
Characterization of Rubber Isolator Nonlinearities in the Context of Single- and Multi-Degree-Of-Freedom Experimental Systems
,”
J. Sound Vib.
0022-460X,
247
(
5
), pp.
807
834
.
You do not currently have access to this content.