Identification of damping is an active area of research in structural dynamics. In one of the earliest works, Lancaster [1] proposed a method to identify the viscous damping matrix from measured natural frequencies and mode shapes. His method requires the modes to be normalized in a particular way, which in turn a priori needs the very same viscous damping matrix. A method, based on the poles and residues of the measured transfer functions, has been proposed to overcome this basic difficulty associated with Lancaster’s method. This approach is then extended to a class of nonviscously damped systems where the damping forces depend on the past history of the velocities via convolution integrals over some kernel functions. Suitable numerical examples are given to illustrate the modified Lancaster’s method developed here.

1.
Lancaster
,
P.
,
1961
, “
Expression of Damping Matrices in Linear Vibration Problems
,”
J. Aerosp. Sci.
,
28
, p.
256
256
.
2.
Pilkey, D. P., and Inman, D. J., 1998, “Survey of Damping Matrix Identification,”Proceedings of the 16th International Modal Analysis Conference (IMAC), Vol. 1.
3.
Fabunmi
,
J.
,
Chang
,
P.
, and
Vorwald
,
J.
,
1988
, “
Damping Matrix Identification Using the Spectral Basis Technique
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
, pp.
332
337
.
4.
Hasselsman
,
T. K.
,
1972
, “
A Method of Constructing a Full Modal Damping Matrix from Experimental Measurements
,”
AIAA J.
,
10
(
4
), pp.
526
527
.
5.
Be´liveau
,
J.-G.
,
1976
, “
Identification of Viscous Damping in Structures from Modal Information
,”
ASME J. Appl. Mech.
,
43
, pp.
335
339
.
6.
Ibrahim
,
S. R.
,
1983
, “
Dynamic Modeling of Structures from Measured Complex Modes
,”
AIAA J.
,
21
(
6
), pp.
898
901
.
7.
Minas
,
C.
, and
Inman
,
D. J.
,
1991
, “
Identification of a Nonproportional Damping Matrix from Incomplete Modal Information
,”
ASME J. Vibr. Acoust.
,
113
, pp.
219
224
.
8.
Starek
,
L.
, and
Inman
,
D. J.
,
1997
, “
A Symmetric Inverse Vibration Problem for Nonproportional Underdamped Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
601
605
.
9.
Pilkey, D. F., and Inman, D. J., 1997, “Iterative Approach to Viscous Damping Matrix Identification,” Proceedings of the 15th International Modal Analysis Conference (IMAC), Vol. 2.
10.
Alvin
,
K. F.
,
Peterson
,
L. D.
, and
Park
,
K. C.
,
1997
, “
Extraction of Normal Modes and Full Modal Damping from Complex Modal Parameters
,”
AIAA J.
,
35
(
7
), pp.
1187
1194
.
11.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2001
, “
Identification of Damping: Part 1, Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
43
61
.
12.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2001
, “
Identification of Damping: Part 2, Non-Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
63
88
.
13.
Caravani
,
P.
, and
Thomson
,
W. T.
,
1974
, “
Identification of Damping Coefficients in Multidimensional Linear Systems
,”
ASME J. Appl. Mech.
,
41
, pp.
379
382
.
14.
Fritzen
,
C.-P.
,
1986
, “
Identification of Mass, Damping and Stiffness Matrices of Mechanical Systems
,”
ASME J. Vib. Acoust., Stress, Reliab. Des.
,
108
, pp.
9
16
.
15.
Mottershead
,
J. E.
,
1990
, “
Theory for the Estimation of Structural Vibration Parameters from Incomplete Data
,”
AIAA J.
,
28
(
3
), pp.
559
561
.
16.
Roemer
,
M. J.
, and
Mook
,
D. J.
,
1992
, “
Mass, Stiffness and Damping Matrix Identification: An Integrated Approach
,”
ASME J. Vibr. Acoust.
,
114
, pp.
358
363
.
17.
Chen
,
S. Y.
,
Ju
,
M. S.
, and
Tsuei
,
Y. G.
,
1996
, “
Estimation of Mass Stiffness and Damping Matrices from Frequency Response Function
,”
ASME J. Vibr. Acoust.
,
118
, pp.
78
82
.
18.
Baruch, M., 1997, “Identification of the Damping Matrix,” Technical Report TAE No. 803, Technion, Israel, Faculty of Aerospace Engineering, Israel Institute of Technology, Haifa.
19.
Adhikari, S., 2000, “Damping Models for Structural Vibration,” Ph.D. thesis, Cambridge University Engineering Department, Cambridge, UK.
20.
Foss
,
K. A.
,
1958
, “
Co-ordinates Which Uncouple the Equations of Motion of Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
25
, pp.
361
364
.
21.
Newland
,
D. E.
,
1987
, “
On the Modal Analysis of Nonconservative Linear Systems
,”
J. Sound Vib.
,
112
(
1
), pp.
69
96
.
22.
Sestieri
,
A.
, and
Ibrahim
,
R.
,
1994
, “
Analysis of Errors and Approximations in the Use of Modal Coordinates
,”
J. Sound Vib.
,
177
(
2
), pp.
145
157
.
23.
Fawzy
,
I.
,
1977
, “
Orthogonality of Generally Normalized Eigenvectors and Eigenrows
,”
AIAA J.
,
15
(
2
), pp.
276
278
.
24.
Vigneron
,
F. R.
,
1986
, “
A Natural Modes Model and Modal Identities for Damped Linear Structures
,”
ASME J. Appl. Mech.
,
53
, pp.
33
38
.
25.
Ewins, D. J., 1984, Modal Testing: Theory and Practice, Research Studies Press, Taunton.
26.
Balme`s, E., 1996, “Frequency Domain Identification of Structural Dynamics Using the Pole/Residue Parametrization,” Proceedings of the 14th International Modal Analysis Conference (IMAC), Vol. 1, Dearbon, MI.
27.
Balme`s
,
E.
,
1997
, “
New Results on the Identification of Normal Modes from Experimental Complex Modes
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
229
243
.
28.
Biot, M. A., 1958, “Linear Thermodynamics and the Mechanics of Solids,” Proceedings of the Third U.S. National Congress on Applied Mechanics, ASME, New York.
29.
Adhikari
,
S.
,
2002
, “
Dynamics of Non-Viscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
(
3
), pp.
328
339
.
30.
Adhikari
,
S.
,
2001
, “
Eigenrelations for Non-Viscously Damped Systems
,”
AIAA J.
,
39
(
8
), pp.
1624
1630
.
31.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time Domain Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
, pp.
897
906
.
32.
McTavish
,
D. J.
, and
Hughes
,
P. C.
,
1993
, “
Modeling of Linear Viscoelastic Space Structures
,”
ASME J. Vibr. Acoust.
,
115
, pp.
103
110
.
You do not currently have access to this content.