Abstract

A technique is introduced to achieve transient vibration attenuation in a multi-input, multi-output flexible rotor/magnetic bearing system. The strategy employs feedback control of measured harmonic components of rotor vibration. Whereas previous harmonic controllers have been based only on steady state vibration characteristics, the new controller also incorporates the transient dynamics. The controller may still be designed from measured data and is determined from target transient vibrational responses arising from step changes in particular disturbances. Account is taken of delays arising from evaluation of harmonic components. Furthermore, stability boundaries for the controller are shown to have significant tolerance to measurement error. The controller is validated experimentally in a flexible rotor/magnetic bearing system and mass loss tests are used to demonstrate rapid decrease in vibration levels with near elimination of transient overshoot.

1.
Palazzolo
,
A. B.
,
Lin
,
R. R.
,
Kasak
,
A. K.
, and
Alexander
,
R. M.
,
1989
, “
Active Control of Transient Rotordynamic Vibration by Optimal Control Methods
,”
ASME J. Eng. Gas Turbines Power
,
111
, pp.
264
270
.
2.
Palazzolo
,
A. B.
,
Lin
,
R. R.
,
Alexander
,
R. M.
,
Kasak
,
A. F.
, and
Montague
,
G. T.
,
1991
, “
Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery
,”
ASME J. Vibr. Acoust.
,
113
, pp.
167
175
.
3.
Viggiano, F., and Schweitzer, G., 1992, “Blade Loss Dynamics of a Magnetically Suspended Rotor,” Proceedings, 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Hawaii, pp. 53–68.
4.
Zimmerman
,
D. C.
,
Inman
,
D. J.
, and
Juang
,
J.-N.
,
1991
, “
Vibration Suppression Using a Constrained Rate-Feedback-Threshold Strategy
,”
ASME J. Vibr. Acoust.
,
113
, pp.
345
353
.
5.
Yae
,
K. H.
, and
Inman
,
D. J.
,
1993
, “
Control-Oriented Order Reduction of Finite Element Model
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
708
711
.
6.
Keogh
,
P. S.
,
Mu
,
C.
, and
Burrows
,
C. R.
,
1995
, “
Optimized Design of Vibration Controllers for Steady and Transient Excitation of Flexible Rotors
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
, pp.
155
168
.
7.
Burrows
,
C. R.
, and
Sahinkaya
,
M. N.
,
1983
, “
Vibration Control of Multi-Mode Rotor-Bearing Systems
,”
Proc. R. Soc. London, Ser. A
,
386
, pp.
77
94
.
8.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
,
1995
, “
Experiments in the Control of Unbalanced Response using Magnetic Bearings
,”
Mechatronics
,
5
, pp.
385
400
.
9.
Knospe, C. R., Hope, R. W., Fedigan, S. J., and Williams, R. D., 1994, “New Results in the Control of Rotor Synchronous Vibration,” Proceedings, 4th International Conference on Magnetic Bearings, Zurich, pp. 119–124.
10.
Keogh
,
P. S.
,
Burrows
,
C. R.
, and
Berry
,
T.
,
1996
, “
On-Line Controller Implementation for Attentuation of Synchronous and Transient Rotor Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
315
321
.
11.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
,
1997
, “
A Multitasking DSP Implementation of Adaptive Magnetic Bearing Control
,”
IEEE Trans. Control Syst. Technol.
,
5
, pp.
230
238
.
12.
Knospe
,
C. R.
,
Tamer
,
S. M.
, and
Fedigan
,
S. J.
,
1997
, “
Robustness of Adaptive Rotor Vibration Control to Structured Uncertainty
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
243
250
.
13.
Shafai
,
B.
,
Beale
,
S.
,
LaRocca
,
P.
, and
Cusson
,
E.
,
1994
, “
Magnetic Bearing Control Systems and Adaptive Force Balancing
,”
IEEE Control Syst. Mag.
,
14
, pp.
4
13
.
14.
Herzog
,
R.
,
Bu¨hler
,
P.
,
Ga¨hler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
4
, pp.
580
586
.
15.
Manchala
,
D. W.
,
Palazzolo
,
A. B.
,
Kasak
,
A. F.
,
Montague
,
G. T.
, and
Brown
,
G. V.
,
1997
, “
Constrained Quadratic Programming, Active Control of Rotating Mass Imbalance
,”
J. Sound Vib.
,
205
, pp.
561
580
.
16.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
, pp.
593
600
.
17.
Maciejowski, J. M., 1989, Multivariable Feedback Design, Addision-Wesley Publishing Company.
You do not currently have access to this content.