Abstract

A precise integration algorithm is proposed to solve the differential equation of surface wave propagation for stratified anisotropic material. The method can easily be extended to 3D wave problems. The numerical result is exact in the sense that it depends only on the precision of the host computer.

1.
Aki, K., and Richards, P. G., 1980, Quantitative Seismology, W. H. Freeman and Company, San Francisco.
2.
Brekhovskikh, L. M., 1980, Waves in Layered Media, Academic Press, NY.
3.
Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, Elastic Waves in Layered Media, McGraw-Hill, NY.
4.
Achenback, J. D., 1975, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
5.
Doyle, J. F., 1989, Wave Propagation in Structures, Springer, NY.
6.
Graff, K, F., 1975, Wave Motion in Elastic Solids, Clarendon Press, Oxford.
7.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, NY, 3rd Ed.
8.
Rizzi
,
S. A.
, and
Doyle
,
J. F.
,
1992
, “
Spectral Analysis of Wave Motion in Plane Solids With Boundaries
,”
ASME J. Vibr. Acoust.
,
114
, pp.
133
140
.
9.
Rizzi
,
S. A.
, and
Doyle
,
J. F.
,
1992
, “
A Spectral Element Approach to Wave Motion in Layered Solids
,”
ASME J. Vibr. Acoust.
,
114
, pp.
569
577
.
10.
Kennett, B. L. N., 1983, Seismic Wave Propagation in Stratified Media, Cambridge University Press.
11.
Zhong W. X., 1994, “The Method of Precise Integration of Finite Strip and Wave Guide Problems,” Proc. Int. Conf. on Computational Methods in Struct. and Geotech. Eng., Hong Kong, 1, pp. 51–59.
12.
Cheung, Y. K., 1976, Finite Strip Method in Structural Analysis, Pergamon Press, Oxford.
13.
Zienkiewicz, O. C., and Taylor, R., 1991, The Finite Element Method, Chap. 6, 2nd Ed, McGraw-Hill, NY.
14.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B, P., 1992, Numerical Recipes, Cambridge University Press.
15.
Zhong
,
W. X.
, and
Zhong
,
X. X.
,
1990
, “
Computational Structural Mechanics, Optimal Control and Semi-Analytical Method for PDE
,”
Comput. Struct.
,
37
, pp.
993
1004
.
16.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1992
, “
Wave Propagation for Repetitive Structures and Symplectic Mathematics
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
206
, pp.
371
379
.
17.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Q. J. Mech. Appl. Math.
,
24
, pp.
263
284
.
18.
Williams
,
F. W.
,
Zhong
,
W. X.
, and
Bennett
,
P. N.
,
1993
, “
Computation of the Eigenvalues of Wave Propagation in Periodic Substructural Systems
,”
ASME J. Vibr. Acoust.
,
115
, pp.
422
426
.
19.
Zhong
,
W. X.
,
Williams
,
F. W.
, and
Bennett
,
P. N.
,
1997
, “
Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems
,”
ASME J. Vibr. Acoust.
,
119
, pp.
334
340
.
20.
Zhong
,
W. X.
, and
Williams
,
F. W.
,
1994
, “
A Precise Time Step Integration Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
208
, pp.
427
430
.
You do not currently have access to this content.