Abstract
A precise integration algorithm is proposed to solve the differential equation of surface wave propagation for stratified anisotropic material. The method can easily be extended to 3D wave problems. The numerical result is exact in the sense that it depends only on the precision of the host computer.
Issue Section:
Technical Papers
1.
Aki, K., and Richards, P. G., 1980, Quantitative Seismology, W. H. Freeman and Company, San Francisco.
2.
Brekhovskikh, L. M., 1980, Waves in Layered Media, Academic Press, NY.
3.
Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, Elastic Waves in Layered Media, McGraw-Hill, NY.
4.
Achenback, J. D., 1975, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
5.
Doyle, J. F., 1989, Wave Propagation in Structures, Springer, NY.
6.
Graff, K, F., 1975, Wave Motion in Elastic Solids, Clarendon Press, Oxford.
7.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, NY, 3rd Ed.
8.
Rizzi
, S. A.
, and Doyle
, J. F.
, 1992
, “Spectral Analysis of Wave Motion in Plane Solids With Boundaries
,” ASME J. Vibr. Acoust.
, 114
, pp. 133
–140
.9.
Rizzi
, S. A.
, and Doyle
, J. F.
, 1992
, “A Spectral Element Approach to Wave Motion in Layered Solids
,” ASME J. Vibr. Acoust.
, 114
, pp. 569
–577
.10.
Kennett, B. L. N., 1983, Seismic Wave Propagation in Stratified Media, Cambridge University Press.
11.
Zhong W. X., 1994, “The Method of Precise Integration of Finite Strip and Wave Guide Problems,” Proc. Int. Conf. on Computational Methods in Struct. and Geotech. Eng., Hong Kong, 1, pp. 51–59.
12.
Cheung, Y. K., 1976, Finite Strip Method in Structural Analysis, Pergamon Press, Oxford.
13.
Zienkiewicz, O. C., and Taylor, R., 1991, The Finite Element Method, Chap. 6, 2nd Ed, McGraw-Hill, NY.
14.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B, P., 1992, Numerical Recipes, Cambridge University Press.
15.
Zhong
, W. X.
, and Zhong
, X. X.
, 1990
, “Computational Structural Mechanics, Optimal Control and Semi-Analytical Method for PDE
,” Comput. Struct.
, 37
, pp. 993
–1004
.16.
Zhong
, W. X.
, and Williams
, F. W.
, 1992
, “Wave Propagation for Repetitive Structures and Symplectic Mathematics
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 206
, pp. 371
–379
.17.
Wittrick
, W. H.
, and Williams
, F. W.
, 1971
, “A General Algorithm for Computing Natural Frequencies of Elastic Structures
,” Q. J. Mech. Appl. Math.
, 24
, pp. 263
–284
.18.
Williams
, F. W.
, Zhong
, W. X.
, and Bennett
, P. N.
, 1993
, “Computation of the Eigenvalues of Wave Propagation in Periodic Substructural Systems
,” ASME J. Vibr. Acoust.
, 115
, pp. 422
–426
.19.
Zhong
, W. X.
, Williams
, F. W.
, and Bennett
, P. N.
, 1997
, “Extension of the Wittrick-Williams Algorithm to Mixed Variable Systems
,” ASME J. Vibr. Acoust.
, 119
, pp. 334
–340
.20.
Zhong
, W. X.
, and Williams
, F. W.
, 1994
, “A Precise Time Step Integration Method
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 208
, pp. 427
–430
.Copyright © 2001
by ASME
You do not currently have access to this content.