Skip Nav Destination
Issues
April 1988
ISSN 0889-504X
EISSN 1528-8900
In this Issue
Research Papers
The Inertial Deposition of Fog Droplets on Steam Turbine Blades
J. Turbomach. April 1988, 110(2): 155–162.
doi: https://doi.org/10.1115/1.3262175
Topics:
Blades
,
Drops
,
Steam turbines
,
Flow (Dynamics)
,
Vapors
,
Cylinders
,
Design
,
Geometry
,
High pressure (Physics)
,
Pressure
Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbines: A Combined Experimental and Theoretical Analysis
J. Turbomach. April 1988, 110(2): 163–172.
doi: https://doi.org/10.1115/1.3262176
Topics:
Drops
,
Pressure
,
Steam turbines
,
Theoretical analysis
,
Water
,
Approximation
,
Cylinders
,
Design
,
Flow (Dynamics)
,
Machinery
Shock-Induced Flow Oscillations in Steam Turbine Diffusers
J. Turbomach. April 1988, 110(2): 173–180.
doi: https://doi.org/10.1115/1.3262177
Topics:
Diffusers
,
Flow (Dynamics)
,
Oscillations
,
Shock (Mechanics)
,
Steam turbines
,
Blades
,
Boundary layers
,
Clearances (Engineering)
,
Excitation
,
Exhaust systems
A Method for Aerodynamic Design of Blades in Quasi-Three-Dimensional Calculation of Turbomachines
J. Turbomach. April 1988, 110(2): 181–186.
doi: https://doi.org/10.1115/1.3262178
Topics:
Blades
,
Design
,
Turbomachinery
,
Computers
,
Inverse problems
,
Shapes
,
Turbine blades
Prediction of Turbulent Source Flow Between Corotating Disks With an Anisotropic Two-Equation Turbulence Model
J. Turbomach. April 1988, 110(2): 187–194.
doi: https://doi.org/10.1115/1.3262179
Topics:
Anisotropy
,
Disks
,
Flow (Dynamics)
,
Turbulence
,
Kinetic energy
,
Energy dissipation
,
Rotation
Calculation of Unsteady Turbulent Boundary Layers
J. Turbomach. April 1988, 110(2): 195–201.
doi: https://doi.org/10.1115/1.3262180
Topics:
Algebra
,
Boundary layer turbulence
,
Boundary layers
,
Flow (Dynamics)
,
Oscillations
,
Turbulence
Numerical Prediction of Turbulent Flow in Rotating Cavities
J. Turbomach. April 1988, 110(2): 202–211.
doi: https://doi.org/10.1115/1.3262181
Topics:
Cavities
,
Turbulence
,
Flow (Dynamics)
,
Outflow
,
Reynolds number
,
Disks
,
Inflow
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
J. Turbomach. April 1988, 110(2): 213–217.
doi: https://doi.org/10.1115/1.3262183
Topics:
Corners (Structural elements)
,
Flow (Dynamics)
,
Orifices
,
Rotation
,
Discharge coefficient
,
Geometry
,
Reynolds number
Sealing of a Shrouded Rotor–Stator System With Preswirl Coolant
J. Turbomach. April 1988, 110(2): 218–225.
doi: https://doi.org/10.1115/1.3262184
Topics:
Coolants
,
Rotors
,
Sealing (Process)
,
Stators
,
Flow (Dynamics)
,
Blades
,
Disks
,
Pressure
,
Nozzles
,
Contamination
Experimental Simulation of Turbine Airfoil Leading Edge Film Cooling
J. Turbomach. April 1988, 110(2): 226–232.
doi: https://doi.org/10.1115/1.3262185
Topics:
Airfoils
,
Film cooling
,
Simulation
,
Turbines
,
Coolants
,
Temperature
,
Heat transfer
,
Mach number
,
Pressure
,
Reynolds number
Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
J. Turbomach. April 1988, 110(2): 233–241.
doi: https://doi.org/10.1115/1.3262186
Topics:
Heat
,
Mass transfer
,
Reynolds number
,
Air flow
,
Airfoils
,
Cooling
,
Ducts
,
Flow (Dynamics)
,
Gas turbines
,
Heat transfer
Procedures for Determining Surface Heat Flux Using Thin Film Gages on a Coated Metal Model in a Transient Test Facility
J. Turbomach. April 1988, 110(2): 242–250.
doi: https://doi.org/10.1115/1.3262187
Topics:
Gages
,
Heat flux
,
Metals
,
Test facilities
,
Thin films
,
Transients (Dynamics)
,
Heat transfer
,
Turbine blades
,
Blades
,
Cascades (Fluid dynamics)
Vibration Amplitudes of Mistuned Blades
J. Turbomach. April 1988, 110(2): 251–257.
doi: https://doi.org/10.1115/1.3262188
Temperature Effect on Particle Dynamics and Erosion in Radial Inflow Turbine
J. Turbomach. April 1988, 110(2): 258–264.
doi: https://doi.org/10.1115/1.3262189
Topics:
Erosion
,
Inflow
,
Particle dynamics
,
Temperature
,
Turbines
,
Flow (Dynamics)
,
Blades
,
Computation
,
Gas turbines
,
Particulate matter
Verification of Compressor Data Accuracy by Uncertainty Analysis and Testing Methods
J. Turbomach. April 1988, 110(2): 265–269.
doi: https://doi.org/10.1115/1.3262190
Topics:
Compressors
,
Testing
,
Uncertainty analysis
,
Uncertainty
,
Air Force
Application of Advanced Computational Codes in the Design of an Experiment for a Supersonic Throughflow Fan Rotor
J. Turbomach. April 1988, 110(2): 270–279.
doi: https://doi.org/10.1115/1.3262191
Topics:
Design
,
Rotors
,
Blades
,
Mach number
,
Nozzles
,
Boundary layers
,
Flow (Dynamics)
,
Shapes
,
Axial flow
,
Databases
Discussions
Discussion: “Numerical Prediction of Turbulent Flow in Rotating Cavities” (Morse, A. P., 1988, ASME J. Turbomach., 110, pp. 202–211)
J. Turbomach. April 1988, 110(2): 211–212.
doi: https://doi.org/10.1115/1.3262182
Topics:
Cavities
,
Turbulence
Discussion: “Influence of the Reynolds Number on the Performance of Centrifugal Compressors” (Strub, R. A., Bonciani, L., Borer, C. J., Casey, M. V., Cole, S. L., Cook, B. B., Kotzur, J., Simon, H., and Strite, M. A., 1987, ASME J. Turbomach., 109, pp. 541–544)
J. Turbomach. April 1988, 110(2): 280–281.
doi: https://doi.org/10.1115/1.3262192
Topics:
Compressors
,
Reynolds number
Closure to “Discussion of ‘Influence of the Reynolds Number on the Performance of Centrifugal Compressors’” (1988, ASME J. Turbomach., 110, pp. 280–281)
R. A. Strub, L. Bonciani, C. J. Borer, M. V. Casey, S. L. Cole, B. B. Cook, J. Kotzur, H. Simon, M. A. Strite
J. Turbomach. April 1988, 110(2): 281–282.
doi: https://doi.org/10.1115/1.3262193
Topics:
Reynolds number