Abstract

This paper introduces and validates a data-driven approach to improve the prediction of linear eddy viscosity models (LEVMs). The general approach is adopted in order to improve the wake mixing of low-pressure turbine (LPT) cascades. The approach is based on the modification of the Boussinesq assumption. It follows the rationale applied in the derivation of explicit algebraic Reynolds stress models (EARSMs) by including additional second-order tensors, as suggested by Pope (1975, “A More General Effective-Viscosity Hypothesis,” J. Fluid Mech., 72(2), pp. 331–340. 10.1017/S0022112075003382 ) . The unknown scalar functions that determine the contributions of each second-order tensor to the Reynolds stresses are approximated as polynomials. A metamodel-assisted multi-objective optimization determines the value of each of the polynomial coefficients. The optimization minimizes the difference between the result of the EARSM simulation and reference data provided by a high-fidelity large eddy simulation (LES). In this study, tailor made EARSMs are calibrated in order to improve the prediction of the kinetic energy loss distribution in the wake of the T106C LPT cascade with an isentropic Reynolds number of 80,000. We showed that the wake losses predicted by state-of-the-art Reynolds-averaged Navier–Stokes (RANS) turbulence models cannot reproduce the reference (LES) data. In the following, we investigated the influence of each polynomial coefficient of the (EARSM) on the flow solutions within a sensitivity study. The models generated by the approach reduced the deviations in total kinetic energy loss between the (LES) reference solution and the baseline model by approximately 70%. The turbulent quantities are analyzed to identify the physical correlations between the model inputs and the improvement. The transferability of the models to unseen test cases was assessed using the MTU-T161 (LPT) cascade with an isentropic Reynolds number of 90,000. A decrease of up to 80% is achieved regarding the deviations between the (LES) reference and the baseline RANS model. In summary, the suggested approach was able to generate tailor made EARSM models that reduce the deviations between RANS and LES for the mixing of turbulent wake flows.

References

1.
Marty
,
J.
,
2014
, “
Numerical Investigations of Separation-Induced Transition on High-Lift Low-Pressure Turbine Using RANS and LES Methods
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
228
(
8
), pp.
924
952
.
2.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2019
, “
Large Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade—Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
.
3.
Michelassi
,
V.
,
Wissink
,
J. G.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier–Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
217
(
4
), pp.
403
411
.
4.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.-W.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
5.
Leschziner
,
M. A.
, and
Drikakis
,
D.
,
2002
, “
Turbulence Modelling and Turbulent-Flow Computation in Aeronautics
,”
Aeronaut. J.
,
106
(
1061
), pp.
349
384
.
6.
Weatheritt
,
J.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Laskowski
,
G. M.
, and
Michelassi
,
V.
,
2017
, “
Machine Learning for Turbulence Model Development Using a High-Fidelity HPT Cascade Simulation
,” Turbo Expo: Power for Land, Sea, and Air, Charlotte, NC, Jun. 26–30,
The American Society of Mechanical Engineers
, No. GT2017-63497.
7.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
8.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.
9.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
10.
Parish
,
E. J.
, and
Duraisamy
,
K.
,
2016
, “
A Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning
,”
J. Comput. Phys.
,
305
(
3
), pp.
758
774
.
11.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
12.
Singh
,
A. P.
,
Medida
,
S.
, and
Duraisamy
,
K.
,
2017
, “
Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,”
AIAA J.
,
55
(
7
), pp.
2215
2227
.
13.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.
14.
Wang
,
J.-X.
,
Wu
,
J.-L.
, and
Xiao
,
H.
,
2017
, “
Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034603
.
15.
Frey Marioni
,
Y.
,
de Toledo Ortiz
,
E. A.
,
Cassinelli
,
A.
,
Montomoli
,
F.
,
Adami
,
P.
, and
Vazquez
,
R.
,
2021
, “
A Machine Learning Approach to Improve Turbulence Modelling From DNS Data Using Neural Networks
,”
Int. J. Turbomach. Propul. Power
,
6
(
2
), p.
17
.
16.
Frey Marioni
,
Y.
,
Adami
,
P.
,
Vazquez Diaz
,
R.
,
Cassinelli
,
A.
,
Sherwin
,
S.
, and
Montomoli
,
F.
,
2024
, “
Development of Machine-Learnt Turbulence Closures for Wake Mixing Predictions in Low-Pressure Turbines
,”
ASME J. Turbomach
.
17.
Weatheritt
,
J.
, and
Sandberg
,
R.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress–Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.
18.
Ferreira
,
C.
,
2001
, “
Gene Expression Programming: A New Adaptive Algorithm for Solving Problems
,”
Complex Syst.
,
13
(
2
), pp.
87
129
.
19.
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
RANS Turbulence Model Development Using CFD-Driven Machine Learning
,”
J. Comput. Phys.
,
411
, p.
109413
.
20.
Lav
,
C.
,
Haghiri
,
A.
, and
Sandberg
,
R. D.
,
2021
, “
RANS Predictions of Trailing-Edge Slot Flows Using Heat-Flux Closures Developed With CFD-Driven Machine Learning
,”
J. Global Power Propuls. Soc. Special Issue: Data-Driven Model. High-Fidelity Simul.
, pp.
1
13
.
21.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Zhao
,
Y.
,
Pacciani
,
R.
, and
Sandberg
,
R. D.
,
2021
, “
Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning
,”
Energies
,
14
, pp.
1
17
.
22.
Fang
,
Y.
,
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Ooi
,
A. S. H.
,
Sandberg
,
R. D.
,
Pacciani
,
R.
, and
Marconcini
,
M.
,
2024
, “
A Data-Driven Approach for Generalizing the Laminar Kinetic Energy Model for Separation and Bypass Transition in Low- and High-Pressure Turbines
,”
ASME J. Turbomach.
,
146
(
9
), p.
091005
.
23.
Weinmann
,
M.
, and
Sandberg
,
R. D.
,
2009
, “
Suitability of Explicit Algebraic Stress Models for Predicting Complex Three-Dimensional Flows
,”
19th AIAA Computational Fluid Dynamics
,
San Antonio, TX
,
June 22–25
.
24.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Pacciani
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2022
, “
Multi-objective Development of Machine-Learnt Closures for Fully Integrated Transition and Wake Mixing Predictions in Low Pressure Turbines
,” Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam, June 13–17,
American Society of Mechanical Engineers
, Paper No. GT2022-81091.
25.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
26.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2008,
,
Engineering design via surrogate modelling: A practical guide
,
John Wiley Distributor and Wiley
,
The Atrium, Southern Gate, Chichester
.
27.
Deb
,
K.
, and
Jain
,
H.
,
2014
, “
An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
,”
IEEE Trans. Evol. Comput.
,
18
(
4
), pp.
577
601
.
28.
Bouhlel
,
M. A.
,
Hwang
,
J. T.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J. R.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Soft.
,
135
(
102662
), pp.
1
13
.
29.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.
30.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2019
, “
On the Identification and Decomposition of the Unsteady Losses in a Turbine Cascade
,”
ASME J. Turbomach.
,
141
(
3
), p.
031005
.
31.
Michálek
,
J.
,
Monaldi
,
M.
, and
Arts
,
T.
,
2012
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number With Effect of Free Stream Turbulence Intensity
,”
ASME J. Turbomach.
,
134
(
6
), p.
061009
.
32.
Leyh
,
S.
, and
Morsbach
,
C.
,
2020
, “
The Coupling of a Synthetic Turbulence Generator With Turbomachinery Boundary Conditions
,”
Proceedings of the ERCOFTAC Workshop Direct and Large Eddy Simulation 12, Vol. 27 of ERCOFTAC Series
,
Madrid, Spain
,
June 5–7
,
Springer International Publishing
, pp.
349
355
.
33.
Entlesberger
,
R.-G.
,
Martinstetter
,
M.
, and
Staudacher
,
W.
,
2005
, “Untersuchungen am Turbinengitter T161 zur Bestimmung der Profildruckverteilung und der Gittercharakteristik,” Institutsbericht LRT-WE12-05/02 Universität der Bundeswehr München, Neubiberg.
34.
Fard Afshar
,
N.
,
Kožulović
,
D.
,
Henninger
,
S.
,
Deutsch
,
J.
, and
Bechlars
,
P.
,
2023
, “
Turbulence Anisotropy Analysis at the Middle Section of a Highly Loaded 3d Linear Turbine Cascade Using Large Eddy Simulation
,”
J. Global Power Propuls. Soc.
,
7
, pp.
71
84
.
35.
Nürnberger
,
D.
,
2004
, “Implizite zeitintegration für die simulation von turbomaschinenströmungen,” PhD thesis, Ruhr-Universität Bochum, Bochum.
36.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
37.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R. B.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
Antalya, Turkey
,
Oct. 12–17
,
Begell House
, New York, pp.
625
632
.
38.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
39.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16—18
,
F.
Durst
,
N.
Kasagi
,
B. E.
Launder
,
F. W.
Schmidt
,
K.
Suzuki
, and
J. H.
Whitelaw
, eds.,
Springer
,
Berlin
, pp.
10.4.1
10.4.6
.
40.
Bode
,
C.
,
Aufderheide
,
T.
,
Friedrichs
,
J.
, and
Kožulović
,
D.
,
2014
, “
Improved Turbulence and Transition Prediction for Turbomachinery Flows
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition—2014
,
Nov. 14–20
,
New York
,
ASME
, pp.
1
15
.
41.
Cécora
,
R.-D.
,
Radespiel
,
R.
,
Eisfeld
,
B.
, and
Probst
,
A.
,
2015
, “
Differential Reynolds-Stress Modeling for Aeronautics
,”
AIAA J.
,
53
(
3
), pp.
739
755
.
42.
Akolekar
,
H. D.
,
2019
, “
Turbulence Model Development and Implementation for Low Pressure Turbines Using a Machine Learning Approach
,” PhD thesis,
University of Melbourne
,
Melbourne
, August.
43.
Parneix
,
S.
,
Laurence
,
D.
, and
Durbin
,
P.
,
1998
, “
A Procedure for Using DNS Databases
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
40
47
.
44.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 078001.
You do not currently have access to this content.