Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Droplet deposition on a turbine cascade is important for the turbine system performance but its experimental analysis is difficult. Thus, the simulation of a droplet liquid phase in a gas flow field was studied to optimize turbine cascade design. However, the computational fluid dynamics (CFD)-based approach for such droplet problems requires enormous costs. Thus, the application of CFD simulation in the turbine blade's early-stage design is challenging, requiring iterative optimization for adjusting design with performance prediction. Therefore, this study proposed an analytical prediction method, having a reasonable cost and moderate accuracy, as an alternative to the whole multi-phase numerical simulation approach. The proposed method predicts droplet motion using the outline of the turbine blade and gas–liquid physical properties. Furthermore, the approach was validated by performing a three-dimensional Eulerian–Lagrangian simulation with low-pressure turbine blade T106. It was found that the droplet trajectories in the turbine cascade are governed by Stokes number. Furthermore, the streamlines of the gas flow were characterized by the shape of the turbine blade. The proposed model reproduced droplet trajectories obtained using CFD within an error margin of 10%. Consequently, it was concluded that the proposed analytical model is a promising approach to predict the droplet trajectory in a turbine cascade, obtained by the three-dimensional numerical simulation at a low cost.

References

1.
Hussein
,
M. D.
, and
Tabakoff
,
W.
,
1973
, “
Dynamic Behavior of Solid Particles Suspended by Polluted Flow in a Turbine Stage
,”
J. Aircr.
,
10
(
7
), pp.
434
440
.
2.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Mansour
,
M. L.
,
1986
, “
Turbine Erosion Exposed to Particulate Flow
,”
Proceedings of ASME 1986 International Gas Turbine Conference and Exhibit
, Paper No. 86-GT-258.
3.
Bojdo
,
N.
,
Ellis
,
M.
,
Filippone
,
A.
,
Jones
,
M.
, and
Pawley
,
A.
, 2019, “
Particle-Vane Interaction Probability in Gas Turbine Engines
,”
ASME J. Turbomach.
,
141
(
9
), p.
091010
.
4.
Zhou
,
Q.
,
Li
,
N.
,
Chen
,
X.
,
Yonezu
,
A.
,
Xu
,
T.
,
Hui
,
S.
, and
Zhang
,
D.
,
2008
, “
Water Drop Erosion on Turbine Blades: Numerical Framework and Applications
,”
Mater. Trans.
,
49
(
7
), pp.
1606
1615
.
5.
Sasao
,
Y.
,
Miyake
,
S.
,
Okazaki
,
K.
,
Yamamoto
,
S.
, and
Ooyama
,
H.
,
2013
, “
Eulerian–Lagrangian Numerical Simulation of Wet Steam Flow Through Multi-stage Steam Turbine
,”
Proceedings of ASME Turbo Expo 2013
, Paper No. GT2013-95945.
6.
Young
,
J.
, and
Yau
,
K.
,
1988
, “
The Inertial Deposition of Fog Droplets on Steam Turbine Blades
,”
ASME J. Turbomach.
,
110
(
2
), pp.
155
162
.
7.
Myers
,
T. G.
,
2001
, “
Extension to the Messinger Model for Aircraft Icing
,”
AIAA J.
,
39
(
2
), pp.
211
218
.
8.
Cao
,
Y.
,
Zhang
,
Q.
, and
Sheridan
,
J.
,
2008
, “
Numerical Simulation of Rime Ice Accretions on an Aerofoil Using an Eulerian Method
,”
Aeronaut. J.
,
112
(
1131
), pp.
243
249
.
9.
Gaunaa
,
M.
,
Sørensen
,
N. N.
,
Johansen
,
N. F.-J.
,
Olsen
,
A. S.
,
Bak
,
C.
, and
Andersen
,
R. B.
,
2018
, “
Investigation of Droplet Path in a Rain Erosion Tester
,”
J. Phys.: Conf. Ser.
,
1037
(
18
), p.
062030
.
10.
Noorani
,
A.
,
Sardina
,
G.
,
Brandt
,
L.
, and
Schlatter
,
P.
, 2016, “
Particle Transport in Turbulent Curved Pipe Flow
,”
J. Fluid Mech.
,
793
, pp.
248
279
.
11.
Wu
,
Z.
, and
Young
,
J. B.
, 2012, “
The Deposition of Small Particles From a Turbulent Air Flow in a Curved Duct
,”
Int. J. Multiph. Flow
,
44
, pp.
34
47
.
12.
Gyarmathy
,
G.
,
1966
, “Foundations of a Theory of the Wet Steam Turbine,” FTD-TT-63-785.
13.
Senoo
,
S.
,
Ono
,
H.
,
Shibata
,
T.
,
Nakano
,
S.
,
Yamashita
,
Y.
,
Asai
,
K.
,
Sakakibara
,
K.
,
Yoda
,
H.
,
Kudo
,
T.
,
2014
, “
Development of Titanium 3600 rpm–50 inch and 3000 rpm–60 inch Last Stage Blades for Steam Turbines
,”
Int. J. Gas Turbine Propuls. Power Syst.
,
6
(
2
), pp.
9
16
.
14.
Moore
,
M. J.
, and
Sieverding
,
C. H.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators: Theory, Instrumentation, Engineering
,
Hemisphere Pub. Corp.
,
Washington, DC
.
15.
Zhang
,
R.
,
Xu
,
K.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2021
, “
Deposition Process and Equivalent Markov Motion of High-Inertia Particles in a Long Straight Pipeline
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111403
.
16.
Dring
,
R. P.
, and
Suo
,
M.
,
1978
, “
Particle Trajectories in Swirling Flows
,”
J. Energy
,
2
(
4
), pp.
232
237
.
17.
Soo
,
S. L.
,
1967
,
Fluid Dynamics of Multiphase Systems
,
Blaisdell Publishing, Waltham, MA
.
18.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
162
, pp.
100
111
.
19.
Hoheisel
,
H.
,
1990
, “
Test Cases for Computation of Internal Flows in Aero Engine Components
,” AGARD-AR-275, pp.
112
123
.
20.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations
,”
J. Comput. Phys.
,
160
(
1
), pp.
241
282
.
21.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.
22.
Greenshields
,
C.
,
Weller
,
H.
,
Gasparini
,
L.
, and
Reese
,
J.
,
2010
, “
Implementation of Semi-discrete, Non-staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High-Speed Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
1
21
.
23.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
Proceedings of 39th Aerospace Sciences Meeting and Exhibit
,
Reno, NV, Jan.
pp.
8
11
.
24.
Putnam
,
A.
,
1961
, “
Integratable Form of Droplet Drag Coefficient
,”
ARS J.
,
31
, pp.
1467
1468
.
25.
Saffman
,
P. G. T.
, 2006, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
1965
,
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.
26.
Mei
,
R.
,
1992
, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiph. Flow
,
18
(
1
), pp.
145
147
.
27.
Xiao
,
H.
, and
Ginnella
,
P.
,
2018
, “
Quantification of Model Uncertainty in RANS Simulations: A Review
,”
Prog. Aerosp. Sci.
,
108
, pp.
1
31
.
28.
Wagner
,
J.
,
Johnson
,
B.
, and
Geiling
,
D.
,
1991
, “
Effects of Turbine Design on Particulate Erosion of Turbine Airfoils
,”
Proceedings of ASME Turbo Expo
, Paper No. 91-GT-292.
You do not currently have access to this content.