Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A novel boundary layer diverter is designed and optimized for increasing the performance of a typical semi-submerged inlet ingesting large amounts of boundary layer flow. A conceptual diverter configuration based on the prior optimization study is first parametrized with seven design variables. A response surface model is constructed for the pressure recovery at the aerodynamic interface plane (AIP). The flow fields over the diverter and through the inlet duct are computed with SU2 and a baseline diverter is constructed from the response surface model for maximum pressure recovery. The baseline diverter is then placed in a free-form deformation box and shape optimized using the adjoint solver of SU2 with hundreds of design parameters. The optimum configuration provides 2.4% and 7.93% increase in the pressure recovery and the mass flow rate, respectively, together with a significant reduction in flow distortion. The novel diverter is then shape optimized together with the inlet duct. Together with all the performance parameters, the pressure recovery is improved by more than 3%. It is shown that the novel boundary layer diverter by being flush to the inlet surface induces a much smaller drag compared to the conventional diverters.

References

1.
Pérez
,
C. C.
,
Ferreira
,
S. B.
,
da Silva
,
L. F. F.
,
de Jesus
,
A. B.
, and
Oliveira
,
G. L.
,
2007
, “
Computational Study of Submerged Air Inlet Performance Improvement Using Vortex Generators
,”
J. Aircr.
,
44
(
5
), pp.
1574
1587
.
2.
Sun
,
S.
,
Tan
,
H.-J.
, and
Wang
,
C.-X.
,
2016
, “
Submerged Inlet Performance Enhancement Using a Unique Bump-Shaped Vortex Generator
,”
J. Propul. Power
,
32
(
5
), pp.
1275
1280
.
3.
Saheby
,
E. B.
,
Gouping
,
H.
,
Wenyou
,
Q.
, and
Weiyuan
,
T.
,
2016
, “
Highly Integrated Inlet Design Based on the Ridge Concept
,”
J. Propul. Power
,
32
(
6
), pp.
1505
1515
.
4.
Liou
,
M.-S.
, and
Lee
,
B. J.
,
2011
, “
Minimizing Inlet Distortion for Hybrid Wing Body Aircraft
,”
ASME J. Turbomach.
,
134
(
3
), p.
031020
.
5.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2015
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
J. Propul. Power
,
31
(
3
), pp.
843
850
.
6.
Rodriguez
,
D. L.
,
2009
, “
Multidisciplinary Optimization Method for Designing Boundary Layer Ingesting Inlets
,”
J. Aircr.
,
46
(
3
), pp.
883
894
.
7.
Li
,
Z.
,
Zhang
,
Y.
,
Pan
,
T.
,
Zhang
,
J.
, and
Shang
,
Y.
,
2022
, “
Study on the Aerodynamic Performance of Boundary-Layer Ingesting Inlet With Various Geometries
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
236
(
1
), pp.
60
71
.
8.
Küçük
,
U. C.
, and
Tuncer
,
I. H.
,
2024
, “
Adjoint Based Aerodynamic Shape Optimization of a Semi-submerged Inlet Duct and Upstream Inlet Surface
,”
Optim. Eng.
, pp.
1573
2924
.
9.
Parham
,
J.
,
Fitzgerald
,
M.
, and
de la Rosa Blanco
,
E.
,
2011
, “
Flow Control for Boundary Layer Ingestion in an S-Duct Difuser
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, p.
822
, Paper No. AIAA 2011-822.
10.
Taskinoglu
,
E. S.
, and
Knight
,
D. D.
,
2004
, “
Multi-objective Shape Optimization Study for a Subsonic Submerged Inlet
,”
J. Propul. Power
,
20
(
4
), pp.
620
633
.
11.
Küçük
,
U. C.
,
Baran
,
Ö. U.
, and
Uzol
,
O.
,
2015
, “
Passive Flow Control in Boundary Layer Ingesting Semi Submerged Inlet
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
, p.
3803
, Paper No. AIAA 2015-3803.
12.
Harrison
,
N. A.
,
Anderson
,
J.
,
Fleming
,
J. L.
, and
Ng
,
W. F.
,
2013
, “
Active Flow Control of a Boundary Layer Ingesting Serpentine Inlet Diffuser
,”
J. Aircr.
,
50
(
1
), pp.
262
271
.
13.
Owens
,
L. R.
,
Allan
,
B. G.
, and
Gorton
,
S. A.
,
2008
, “
Boundary Layer Ingesting Inlet Flow Control
,”
J. Aircr.
,
45
(
4
), pp.
1431
1440
.
14.
Scribben
,
A. R.
,
Ng
,
W.
, and
Burdisso
,
R.
,
2004
, “
Effectiveness of a Serpentine Inlet Duct Flow Control Technique at Design and Off-Design Simulated Flight Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
332
339
.
15.
Minitab, Inc.
,
2020
, Minitab Statistical Software,
State College, PA
.
16.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
Su2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.
17.
Palacios
,
F.
,
Colonno
,
R. M.
,
Aranake
,
A. C.
,
Campos
,
A.
,
Copeland
,
S. R.
,
Economon
,
T. D.
,
Lonkar
,
A. K.
,
Lukaczyk
,
T. W.
,
Taylor
,
T. W. R.
, and
Alonso
,
J. J.
,
2013
, “
Stanford University Unstructured (SU2): An Open-Source Integrated Computational Environment for Multi-physics Simulation and Design
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, p.
287
, Paper No. AIAA-2013-0287.
18.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
, p.
439
, Paper No. AIAA-1992-0439.
19.
Weiss
,
J. M.
,
Maruszewski
,
J. P.
, and
Smith
,
W. A.
,
1999
, “
Implicit Solution of Preconditioned Navier–Stokes Equations Using Algebraic Multigrid
,”
AIAA J.
,
37
(
1
), pp.
29
36
.
20.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
, pp.
593
595
, Chapter 8.7.
21.
Cousins
,
W. T.
,
Voytovych
,
D.
,
Tillman
,
G.
, and
Gray
,
E.
,
2017
, “
Design of a Distortion-Tolerant Fan for a Boundary Layer Ingesting Embedded Engine Application
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
, p.
5042
, Paper No. AIAA 017-5042.
22.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2019
, “
Nonaxisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.
23.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2023
, “
Mitigation of Boundary Layer Ingestion Circumferential Distortion Using Nonaxisymmetric Fan Exit Guide Vanes
,”
ASME J. Turbomach.
,
145
(
3
), p.
031008
.
24.
SAE
,
2022
, “A Methodology for Assessing Inlet Swirl Distortion,” AIR-5686, Society of Automotive Engineers.
25.
SAE
,
1978
, “Gas Turbine Engine Inlet Flow Distortion Guidelines,” ARP-1420, Society of Automotive Engineers.
26.
Dwight
,
R. P.
,
2006
, “
Robust Mesh Deformation Using the Linear Elasticity Equations
,”
Proceedings of the Fourth International Conference on Computational Fluid Dynamics
,
Ghent, Belgium
,
July 10–14
,
Springer
, pp.
401
406
.
27.
Candioti
,
L. V.
,
De Zan
,
M. M.
,
Camara
,
M. S.
, and
Goicoechea
,
H. C.
,
2014
, “
Experimental Design and Multiple Response Optimization Using the Desirability Function in Analytical Methods Development
,”
Talanta
,
124
, pp.
123
138
.
28.
Berrier
,
B. L.
,
Carter
,
M. B.
, and
Allan
,
B. G.
,
2005
, “High Reynolds Number Investigation of a Flush Mounted, s-Duct Inlet With Large Amounts of Boundary Layer Ingestion,” NASA Technical Paper 2005-213766.
29.
Anabtawi
,
A.
,
Blackwelder
,
R.
,
Lissaman
,
P.
, and
Liebeck
,
R.
,
1999
, “
An Experimental Investigation of Boundary Layer Ingestion in a Diffusing S-Duct With and Without Passive Flow Control
,”
37th Aerospace Sciences Meeting and Exhibit
, p.
739
, Paper No. AIAA 1999-739.
30.
Mossman
,
E. A.
, and
Randall
,
L. M.
,
1948
, “An Experimental Investigation of the Design Variables for NACA Submerged Duct Entrances,” NASA Technical Paper NACA-RM-A7I30.
31.
Dobson
,
M.
, and
Goldsmith
,
E.
,
1972
, “
External Drag of Fuselage Side Intakes
,”
J. Aircr.
,
9
(
2
), pp.
121
128
.
You do not currently have access to this content.