Abstract

Aerodynamic loss models play an important role in the preliminary design of axial turbines. However, prediction accuracy and parameter sensitivity of traditional models being used for decades are problematic. Thus, this paper proposed a new loss model for predicting turbine aerodynamic performance at the design point. In order to construct the model, 228 turbine cascades for calibration were designed and evaluated by computational fluid dynamics (CFD). Based on massive CFD data, correlation of parameters and loss coefficients were investigated. Finally, new loss model expressions were built. The accuracy of the proposed novel model was verified by CFD for nine turbines including 15 stages. Numerical results show that the average efficiency deviation for the new model is 0.48% for stages and 0.009 for entropy loss coefficient of the blade rows. Compared with the Craig and Cox model and Kacker and Okapuu model, the presented new model performs better in predicting aerodynamic loss, especially in predicting the effect of parameters on the losses.

References

1.
Wang
,
J. H.
,
Zhang
,
H. L.
,
Yin
,
Z.
,
Li
,
W.
,
Chen
,
H. S.
, and
Tang
,
H. T.
,
2021
, “
Review of Axial Turbine Loss Model
,”
J. Propul. Technol.
,
42
(
1
), pp.
82
93
.
2.
Ainley
,
D. G.
, and
Mathieson
,
G. C.
,
1951
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” British ARC, R&M2974.
3.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
J. Eng. Power
,
92
(
3
), pp.
252
256
.
4.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
J. Eng. Power
,
104
(
1
), pp.
111
119
.
5.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
6.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
7.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
8.
Zhu
,
J. Q.
, and
Sjolander
,
S. A.
,
2005
, “
Improved Profile Loss and Deviation Correlations for Axial-Turbine Blade Rows
,” ASME Paper No. GT2005-69077.
9.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
10.
Li
,
Z.
,
Liu
,
Y.
,
Yang
,
J. G.
, and
Wang
,
H. Q.
,
2022
, “
A Data-Based Policy Model for Intelligent Turbine Cascade Design
,”
J. Appl. Fluid. Mech.
,
15
(
4
), pp.
1179
1192
.
11.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-439.
12.
Kofskey
,
M. G.
, and
Nusbaum
,
W. J.
,
1968
, “
Aerodynamic Evaluation of Two-Stage Axial-Flow Turbine Designed for Brayton-Cycle Space Power System
,” NASA Report No. NASA TN D-4382.
13.
Thulin
,
R. D.
,
Howe
,
D. C.
, and
Singer
,
I. D.
,
1982
, “
Energy Efficient Engine High-Pressure Turbine Detailed Design Report
,” NASA Report No. NASA-CR-165608.
14.
Fottner
,
L.
,
1990
, “
Test Cases for Computation of Internal Flows in Aero Engine Components
,” AGARD Report No. AGARD-AR-275, 1990.
15.
Bryce
,
J. D.
,
Litchfield
,
M. R.
, and
Leversuch
,
N. P.
,
1985
, “
The Design, Performance and Analysis of a High Work Capacity Transonic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
931
937
.
16.
Smith
,
D. J. L.
,
Johnston
,
I. H.
, and
Fullbrook
,
D. J.
,
1967
, “
Investigations on an Experimental Single-Stage Turbine of Conservative Design
,” British ARC, R&M 3541.
17.
Denton
,
J. D.
, and
Xu
,
L.
,
1990
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
277
285
.
18.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
(
2
), pp.
193
200
.
19.
Havakechian
,
S.
, and
Denton
,
J.
,
2015
, “
3D Blade Stacking Strategies and Understanding of Flow Physics in Low Pressure Steam Turbines: Part I—3D Stacking Mechanisms
,” ASME Paper No. GT2015-42591.
20.
Volmar
,
T. W.
,
Brouillet
,
B.
,
Gallus
,
H. E.
, and
Benetschik
,
H.
,
2000
, “
Time Accurate Three Dimensional Navier-Stokes Analysis of One-and-One-Half Stage Axial-Flow Turbine
,”
J. Propul. Power
,
16
(
2
), pp.
327
335
.
21.
Behr
,
T.
,
2007
, “
Control of Rotor Tip Leakage and Secondary Flow by Casing Air Injection in Unshrouded Axial Turbines
,” Doctoral dissertation, ETH Zurich, Switzerland.
22.
Elzahaby
,
A. M.
,
Khalil
,
M. K.
, and
Badry
,
B. E.
,
2017
, “
Conversion of Turbojet Engine Jet Cat P200 to Turboprop Engine
,”
Int. J. Sci. Eng. Res.
,
8
(
3
), pp.
1447
1452
.
23.
Zhang
,
X. B.
,
2020
, “
Optimization Design and Flow Field Analysis of R245fa Axial Flow Expander
,” Dalian University of Technology, China.
You do not currently have access to this content.