Abstract

In the present study, we investigate the unsteady boundary layer transition based on the direct numerical simulation database of a high-pressure turbine (HPT) stage (Zhao and Sandberg, 2021, High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence, ASME Turbo Expo 2021, Paper No. GT2021-58995), focusing on the transition mechanisms on the rotor blade, affected by the incoming periodic wakes and the background freestream turbulence (FST). On the basis of the fully resolved flow fields, we provide detailed analysis of the flow structures responsible for the transition, and two distinctive transition paths have been identified. The first path is the typical bypass transition via the instability of Klebanoff streaks, which happens when the transition region is not directly affected by the wake. The suction-side boundary layer is disturbed at the leading edge, resulting in the formation of streamwise streaks. These streaky structures endure varicose instability in the region with adverse pressure gradient (APG), then quickly break down into turbulent spots, which then evolve into fully turbulent flow. The other transition path is a consequence of the direct interaction between the wake structures and the blade boundary layer, when the wake apex starts to affect the transitional region. To be specific, the wake structures directly interact with the separation bubble in the APG region, causing sudden breakdown into turbulence. A calmed region is found to follow the wake-induced turbulent boundary layer. It is observed that the recovery to a calmed region can be impacted by the FST, as the calmed region in case with no FST is much longer compared to cases with stronger FST.

References

1.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Ann. Rev. Fluid Mech.
,
54
(
1
), pp.
255
285
.
2.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
3.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.
4.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
5.
Davide
,
L.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade
,”
Flow Turbul. Combust.
,
98
(
1
), pp.
57
81
.
6.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
7.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow Turbul. Combust.
,
69
(
3
), pp.
295
329
.
8.
Sarkar
,
S.
, and
Voke
,
P. R.
,
2005
, “
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
,
128
(
2
), pp.
221
231
.
9.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Durbin
,
P. A.
, and
Rodi
,
W.
,
2009
, “
Direct Computations of Boundary Layers Distorted by Migrating Wakes in a Linear Compressor Cascade
,”
Flow Turbul. Combust.
,
83
(
3
), pp.
307
322
.
10.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Ong
,
J.
,
2017
, “
Highly Resolved Large Eddy Simulation Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
.
11.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, ASME Paper No. GT2021-58995.
12.
Leggett
,
J.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Simulation Study of the Unsteady Flow Effects on High-Pressure Turbine Blade Performance
,”
ASME J. Turbomach.
,
145
(
1
), p.
011002
.
13.
Johnstone
,
R.
,
Chen
,
L.
, and
Sandberg
,
R. D.
,
2015
, “
A Sliding Characteristic Interface Condition for Direct Numerical Simulations
,”
Comp. Fluids
,
107
, pp.
165
177
.
14.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines-Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
15.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comp. Phys.
,
186
(
2
), pp.
652
665
.
16.
Touber
,
E.
, and
Sandham
,
N. D.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.
17.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2020
, “
Bypass Transition in Boundary Layers Subject to Strong Pressure Gradient and Curvature Effects
,”
J. Fluid Mech.
,
888
, p.
A4
.
18.
Zauner
,
M.
,
Sandham
,
N. D.
,
Wheeler
,
A. P. S.
, and
Sandberg
,
R. D.
,
2017
, “
Linear Stability Prediction of Vortex Structures on High Pressure Turbine Blades
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
), p.
8
.
19.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
4
), pp.
741
773
.
20.
Balin
,
R.
, and
Jansen
,
K. E.
,
2021
, “
Direct Numerical Simulation of a Turbulent Boundary Layer Over a Bump With Strong Pressure Gradients
,”
J. Fluid Mech.
,
918
, p.
A14
.
21.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
,
Center for Turbulence Research
,
Dec. 1
.
22.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2004
, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
23.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.
24.
Skote
,
M.
,
Haritonidis
,
J. H.
, and
Henningson
,
D. S.
,
2002
, “
Varicose Instabilities in Turbulent Boundary Layers
,”
Phys. Fluids
,
14
(
7
), pp.
2309
2323
.
25.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
26.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
.
27.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-lift Aerofoils in Low-Pressure Turbines
,”
Ann. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
28.
Zhao
,
Y.
,
Yang
,
Y.
, and
Chen
,
S.
,
2016
, “
Evolution of Material Surfaces in the Temporal Transition in Channel Flow
,”
J. Fluid Mech.
,
793
, pp.
840
876
.
29.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
30.
David
,
W. W.
, and
Goldstein
,
M. E.
,
2001
, “
Effect on a Laminar Boundary Layer of Small-Amplitude Streamwise Vorticity in the Upstream Flow
,”
J. Fluid Mech.
,
426
, pp.
229
262
.
31.
Nolan
,
K. P.
, and
Zaki
,
T. A.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
.
32.
Marxen
,
O.
, and
Zaki
,
T. A.
,
2019
, “
Turbulence in Intermittent Transitional Boundary Layers and in Turbulence Spots
,”
J. Fluid Mech.
,
860
, pp.
350
383
.
33.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
You do not currently have access to this content.