Abstract

In this work, a new multifidelity (MF) uncertainty quantification (UQ) framework is presented and applied to the LS89 nozzle modified by fouling. Geometrical uncertainties significantly influence the aerodynamic performance of gas turbines. One representative example is given by the airfoil shape modified by fouling deposition, as in turbine nozzle vanes, which generates high-dimensional input uncertainties. However, the traditional UQ approaches suffer from the curse of dimensionality phenomenon in predicting the influence of high-dimensional uncertainties. Thus, a new approach based on multifidelity deep neural networks (MF-DNN) was proposed in this paper to solve the high-dimensional UQ problem. The basic idea of MF-DNN is to ensure the approximation capability of neural networks based on abundant low-fidelity (LF) data and few high-fidelity (HF) data. The prediction accuracy of MF-DNN was first evaluated using a 15-dimensional benchmark function. An affordable turbomachinery UQ platform was then built based on key components including the MF-DNN model, the sampling module, the parameterization module and the statistical processing module. The impact of fouling deposition on LS89 nozzle vane flow was investigated using the proposed UQ framework. In detail, the MF-DNN was fine-tuned based on bi-level numerical simulation results: the 2D Euler flow field as low-fidelity data and the 3D Reynolds-averaged Navier–Stokes (RANS) flow field as high-fidelity data. The UQ results show that the total pressure loss of LS89 vane is increased by at most 17.1% or reduced by at most 4.3%, while the mean value of the loss is increased by 3.4% compared to the baseline. The main reason for relative changes in turbine nozzle performance is that the geometric uncertainties induced by fouling deposition significantly alter the intensity of shock waves near the throat area and trailing edge. The developed UQ platform could provide a useful tool in the design and optimization of advanced turbomachinery considering high-dimensional input uncertainties.

References

1.
Montomoli
,
F.
,
Carnevale
,
M.
,
D’Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer International Publishing
,
New York
.
2.
Goodhand
,
M.
, and
Miller
,
R.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.
3.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbine Power
,
134
(
11
), p.
112601
.
4.
Montomoli
,
F.
, and
Massini
,
M.
,
2013
, “
Gas Turbines and Uncertainty Quantification: Impact of PDF Tails on UQ Predictions, the Black Swan
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June 3–7
,
p. V03CT18A002
, ASME Paper No. GT2013-94306.
5.
Roy
,
T.
,
Segui
,
M.
,
Jouhaud
,
C.
, and
Gicquel
,
L.
,
2018
, “
Resampling Strategies to Improve Surrogate Model-Based Uncertainty Quantification: Application to LES of LS89
,”
Int. J. Numer. Methods Fluids
,
87
(
12
), pp.
607
627
.
6.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G.
,
2014
, “
Robust Compressor Blades for Desensitizing Operational tip Clearance Variations
,”
Proceedings of the ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
,
p. V02AT37A043
, ASME Paper No. GT2014-26624.
7.
Montomoli
,
F.
,
D’Ammaro
,
A.
, and
Uchida
,
S.
,
2013
, “
Uncertainty Quantification and Conjugate Heat Transfer: A Stochastic Analysis
,”
ASME J. Turbomach.
,
135
(
3
), p.
031014
.
8.
Abraham
,
S.
,
Tsirikoglou
,
P.
,
Lacor
,
C.
,
Ghorbaniasl
,
G.
,
Wunsch
,
D.
,
Hirsch
,
C.
, and
Contino
,
F.
,
2018
, “
Uncertainty Quantification in Industrial Turbo-Machinery Design Using Sparse Polynomial Chaos Expansions
,”
2018 Multidisciplinary Analysis and Optimization Conference
,
Atlanta, GA
,
June 25–29
,
p. 3103
, Paper No. AIAA 2018-3103.
9.
Li
,
Z.
,
Liu
,
Y.
, and
Agarwal
,
R.
,
2018
, “
Robust Optimization Design of Single-Stage Transonic Axial Compressor Considering the Manufacturing Uncertainties
,”
Proceedings of the ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
,
p. V02DT46A005
, Paper No. GT2018-75415.
10.
Friso
,
R.
,
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
, and
Montomoli
,
F.
,
2020
, “
Uncertainty Analysis of Inflow Conditions on an HPT Gas Turbine Nozzle: Effect on Particle Deposition
,”
Proceedings of the ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
,
p. V02BT34A012
, ASME Paper No. GT2020-15370.
11.
Seshadri
,
P.
,
Wong
,
Y.
,
Scillitoe
,
A.
,
Ubald
,
N.
,
Hill
,
B.
,
Virdis
,
I.
,
Ghisu
,
T.
, and
Duncan
,
A. B.
,
2022
, “
Programming With Equadratures: An Open-Source Package for Uncertainty Quantification, Dimension Reduction, and Much More
,”
AIAA SciTech Forum 2022
,
San Diego, CA
,
Jan. 3–7
,
p. 2108
, AIAA Paper No. 2022-2108.
12.
Forrester
,
A.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. Math. Phys. Eng.
,
463
(
2088
), pp.
3251
3269
.
13.
Cutajar
,
K.
,
Pullin
,
M.
,
Damianou
,
A.
,
Lawrence
,
N.
, and
González
,
J.
,
2019
, “
Deep Gaussian Processes for Multi-Fidelity Modelling
,” ArXiv Preprint. Paper No. arXiv:1903.07320.
14.
Fairbanks
,
R.
,
Jofre
,
L.
,
Geraci
,
G.
,
Iaccarino
,
G.
, and
Doostan
,
A.
,
2020
, “
Bi-Fidelity Approximation for Uncertainty Quantification and Sensitivity Analysis of Irradiated Particle-Laden Turbulence
,”
J. Comput. Phys.
,
402
, p.
108996
.
15.
Berchier
,
M.
,
2016
, “
Multi-Fidelity Surrogate Modelling with Polynomial Chaos Expansions
,”
M.Sc. thesis, ETH Zurich
,
Zurich, Switzerland
.
16.
Palar
,
S.
,
Tsuchiya
,
T.
, and
Parks
,
G.
,
2016
, “
Multi-Fidelity Non-Intrusive Polynomial Chaos Based on Regression
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
579
606
.
17.
Konrad
,
J.
,
Farcaş
,
I.
,
Peherstorfer
,
B.
,
Siena
,
A.
,
Jenko
,
F.
,
Neckel
,
T.
, and
Bungartz
,
H.
,
2022
, “
Data-Driven Low-Fidelity Models for Multi-Fidelity Monte Carlo Sampling in Plasma Micro-Turbulence Analysis
,”
J. Comput. Phys.
,
451
, p.
110898
.
18.
Motamed
,
M.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2015
, “
Analysis and Computation of the Elastic Wave Equation with Random Coefficients
,”
Comput. Math. Appl.
,
70
(
10
), pp.
2454
2473
.
19.
Lu
,
Y.
, and
Lu
,
J.
,
2020
, “
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
,”
34th Conference on Neural Information Processing Systems
,
Vancouver, BC, Canada
,
Dec. 6–12
, pp.
3094
3105
.
20.
Motamed
,
M.
,
2020
, “
A Multi-Fidelity Neural Network Surrogate Sampling Method for Uncertainty Quantification
,”
Int. J. Uncertain. Quantif.
,
10
(
4
), pp.
315
332
.
21.
Meng
,
X.
, and
Karniadakis
,
G.
,
2020
, “
A Composite Neural Network That Learns From Multi-Fidelity Data: Application to Function Approximation and Inverse PDE Problems
,”
J. Comput. Phys.
,
401
, p.
109020
.
22.
Zhang
,
X.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Multi-Fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113485
.
23.
Tabakoff
,
W.
,
1987
, “
Compressor Erosion and Performance Deterioration
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
297
306
.
24.
Wally
,
R.
, and
Casadevall
,
T.
,
1991
, “
Aviation Safety and Volcanic ash Clouds in the Indonesia-Australia Region
,”
Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety
,
Seattle, WA
,
July 8–12
,
p. 191
.
25.
Smialek
,
J.
,
1991
, “
The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils
,” NASA Report, No. NAS 1.15: 105234.
26.
Arts
,
T.
,
Lambertderouvroit
,
M.
, and
Rutherford
,
W.
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade. A Test Case for Inviscid and Viscous Flow Computations
.” NASA STI/Recon Technical Report 1990, Paper No. 9123437A.
27.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
An Energy-Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
28.
Drela
,
M.
, and
Youngren
,
H.
,
1998
,
A User’s Guide to MISES 2.53.
Massachusetts Institute of Technology
.
29.
Andrew
,
P.
, and
Kahveci
,
H.
,
2007
, “
Validation of MISES 2-D Boundary Layer Code for High Pressure Turbine Aerodynamic Design
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
879
893
, ASME Paper No. GT2007-28123.
30.
Poli
,
R.
,
Pini
,
M.
, and
Rao
,
A.
,
2017
, “
A Simplified Method for Wall Temperature Prediction in Externally Cooled Turbines
,”
Proceedings of the 1st Global Power and Propulsion Forum
,
Zurich, Switzerland
,
Jan. 16–18
,
Paper No.. GPPF-2017
.
31.
Fernández-Godino
,
M.
,
Park
,
C.
,
Kim
,
N.
, and
Haftka
,
R.
,
2016
, “
Review of Multi-Fidelity Models
,” ArXiv Preprint. Paper No. arXiv:1609.07196.
32.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
14th International Conference on Artificial Intelligence and Statistics
,
Fort Lauderdale, FL
,
Apr. 11–13
, PMLR. Vol. 15, pp.
315
323
.
33.
Klein
,
A.
,
Falkner
,
S.
,
Bartels
,
S.
,
Hennig
,
P.
, and
Hutter
,
F.
,
2017
, “
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
,”
20th International Conference on Artificial Intelligence and Statistics
,
Ft. Lauderdale, FL
,
Apr. 20–22
, pp.
528
536
.
34.
Kingma
,
D.
, and
Ba
,
J.
,
2014
, “
ADAM: A Method for Stochastic Optimization
,” ArXiv Preprint. Paper No. arXiv:1412.6980.
35.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “Cross-Validation,”
Encyclopedia of Database Systems
, Vol.
5
, pp.
532
538
.
36.
Botev
,
Z.
,
2017
, “
The Normal law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting
,”
J. R. Stat. Soc. Series B Stat. Methodol.
,
79
(
1
), pp.
125
148
.
37.
Agromayor
,
R.
,
Anand
,
N.
,
Müller
,
J.
,
Pini
,
M.
, and
Nord
,
L.
,
2021
, “
A Unified Geometry Parametrization Method for Turbomachinery Blades
,”
Comput. Aided Des.
,
133
, p.
102987
.
38.
Liu
,
H.
,
Ong
,
Y. S.
, and
Cai
,
J.
,
2018
, “
A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscipl. Optim.
,
57
, pp.
393
416
.
39.
Meng
,
X.
,
Babaee
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
Multi-Fidelity Bayesian Neural Networks: Algorithms and Applications
,”
J. Comput. Phys.
,
438
, p.
110361
.
40.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit 2001
,
Reno, NV
,
Jan. 8–11
, p.
879
, Paper No. AIAA 2001-879.
You do not currently have access to this content.