Abstract

An experimental study was performed on the discharge coefficients of laidback fan-shaped holes under different internal coolant crossflow orientations. The influence of the geometric and flow parameters on the discharge coefficient was investigated under flat plate conditions, where the pressure ratio ranged from 1 to 1.6. The results show that the film hole discharge coefficient is more sensitive to variations in the coolant crossflow under small pressure ratios. In comparison, the discharge coefficient is much less sensitive to the change of coolant crossflow under high pressure. Meanwhile, the length of the cylindrical section varied over the range of 1D–4D, and the length of the expansion section varied from 2D to 6D, where D represents the diameter of the film hole. The results show that the discharge coefficient is much more sensitive to the length of the cylindrical section than to the length of the expansion section. To quantify the sensitivity of the internal crossflow effects on the discharge coefficient, a low-ordered reduced model is proposed for the discharge coefficient of laidback fan-shaped holes. Both the geometric and flow parameters are considered in the model and give prediction errors within 5%.

References

1.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
.
2.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1999
, “
Measurements of Discharge Coefficients in Film Cooling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
243
248
.
3.
Hay
,
N.
,
Henshall
,
S. E.
, and
Manning
,
A.
,
1994
, “
Discharge Coefficients of Holes Angled to the Flow Direction
,”
ASME J. Turbomach.
,
116
(
1
), pp.
92
96
.
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
5.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
6.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
7.
Hay
,
N.
, and
Lampard
,
D.
,
1995
, “
The Discharge Coefficient of Flared Film Cooling Holes
,”
Proceedings of the ASME 1995International Gas Turbine and Aeroengine Congress and Exposition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Houston, TX,
,
June 5–8
, p. V004T09A015. ASME Paper No. 95-GT015.
8.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
1999
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
9.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), pp.
905
919
.
10.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
11.
Ye
,
L.
,
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4818
.
12.
Li
,
L.
,
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
,
Luo
,
J. X.
, and
Liu
,
S.
,
2021
, “
Experimental Investigation on Effects of Cross-Flow Reynolds Number and Blowing Ratios to Film Cooling Performance of the Y-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
179
, p.
121682
.
13.
Lorenzo
,
M.
,
Lorenzo
,
W.
, and
Antonio
,
A.
,
2017
, “
Development of a Numerical Correlation for the Discharge Coefficient of Round Inclined Holes With Low Crossflow
,”
Comput. Fluids
,
152
, pp.
182
192
.
14.
Fu
,
Z. Y.
,
Zhu
,
H. R.
,
Liu
,
C. L.
,
Wei
,
J. S.
, and
Zhang
,
B. L.
,
2018
, “
Investigation of the Influence of Inclination Angle and Diffusion Angle on the Film Cooling Performance of Chevron Shaped Hole
,”
J. Therm. Sci.
,
27
(
6
), pp.
580
591
.
15.
Liu
,
C. L.
,
Liu
,
J. L.
,
Zhu
,
H. R.
,
Wu
,
A. S.
,
He
,
Y. H.
, and
Zhou
,
Z. X.
,
2015
, “
Film Cooling Sensitivity of Laidback Fan Shape Holes to Variations in Exit Configuration and Mainstream Turbulence Intensity
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1141
1154
.
16.
Sakai
,
E.
, and
Takahashi
,
T.
,
2011
, “
Experimental and Numerical Study on Effects of Turbulence Promoters on Flat Plate Film Cooling
,”
Proceedings ofthe ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 5: Heat Transfer, Parts A and B
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
105
115
. ASME Paper No. GT2011-45196.
17.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
18.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
(
2
), pp.
314
319
.
19.
Sasaki
,
M.
,
Takahara
,
K.
,
Sakata
,
K.
, and
Kumagai
,
T.
,
1976
, “
Study on Film Cooling of Turbine Blades: Experiments on Film Cooling With Injection Through Holes Near the Leading Edge
,”
Bull. JSME
,
19
(
137
), pp.
1344
1352
.
20.
Tillman
,
E. S.
, and
Jen
,
H. F.
,
1984
, “
Cooling Airflow Studies at the Leading Edge of a Film-Cooled Airfoil
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
214
221
.
21.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method for Correlating Discharge Coefficients of Film-Cooling Holes
,”
AIAA J.
,
36
(
6
), pp.
976
980
.
22.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2000
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
258
265
.
You do not currently have access to this content.