Abstract

The present study aims to analyze the rotating instabilities that may occur inside shroud cavities above rotors of low-pressure turbine configurations. Unsteady simulations have been carried out at design and off-design conditions on two configurations, one being a multi-stage configuration. Unsteady flow structures, uncorrelated from blade passing frequencies and depending on operating points, are identified in every rotor tip shroud cavity. Similarities regarding flow patterns and interactions with the main flow are observed: hot spots of gas having different azimuthal extend come from the tip shroud cavity and rotate at the interface with the main flow path. The influence on the main flow and the origin of these instabilities are discussed. The study at off-design operating points deepens the analysis and allows the identification of physical parameters which drive the instability.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Palmer
,
T. R.
,
Tan
,
C. S.
,
Zuniga
,
H.
,
Little
,
D.
,
Montgomery
,
M.
, and
Malandra
,
A.
,
2016
, “
Quantifying Loss Mechanisms in Turbine Tip Shroud Cavity Flows
,”
ASME J. Turbomach.
,
138
(
9
), p.
091006
.
3.
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Making Use of Labyrinth Interaction Flow
,”
ASME J. Turbomach.
,
129
(
1
), pp.
164
174
.
4.
Jia
,
W.
, and
Liu
,
H.
,
2014
, “
Numerical Investigation of the Interaction Between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine
,”
J. Thermal Sci.
,
23
(
3
), pp.
215
222
.
5.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2003
, “
Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,” ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference,
American Society of Mechanical Engineers
, pp.
187
199
.
6.
Palmer
,
T. R.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Malandra
,
A.
,
Little
,
D.
,
Zuniga
,
H.
, and
Zhou
,
K.
,
2015
, “
Effects of Shroud Asymmetry on the Turbine Tip Shroud Cavity Flow Field
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Canada
,
June 15–19
,
American Society of Mechanical Engineers
, p.
V02AT38A036
.
7.
Wein
,
L.
,
Seume
,
J. R.
, and
Herbst
,
F.
,
2018
, “
Unsteady Flow in a Labyrinth Seal
,”
Proceedings of GPPS Forum 18
,
Montreal, Canada
.
8.
Kluge
,
T.
,
Lettmann
,
I. S.
,
Oettinger
,
M.
,
Wein
,
L.
, and
Seume
,
J. R.
,
2021
, “
Unsteady Flow Phenomena in Turbine Shroud Cavities
,”
J. Glob. Power Propul. Soc.
,
5
, pp.
177
190
.
9.
Tang
,
E.
,
Trébinjac
,
I.
,
Ngo Boum
,
G.
, and
Philit
,
M.
,
2017
, “
Aerodynamic Interactions Between a High Pressure Turbine Stage and a Shroud Cavity
,”
Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Stockholm, Sweden
,
Apr. 3–7
.
10.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
11.
Schädler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2016
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
,
2B-2016
, pp.
1
10
.
12.
Gao
,
J.
,
Zheng
,
Q.
, and
Wang
,
Z.
,
2013
, “
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine
,”
Chin. J. Mech. Eng. (Engl. Ed.)
,
26
(
1
), pp.
69
77
.
13.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
,
American Society of Mechanical Engineers Digital Collection
, pp.
553
562
.
14.
Horwood
,
J. T.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2019
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.
15.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
16.
von Karman Institute for Fluid Dynamics
,”
H2020 spleen
. https://www.h2020-spleen.eu/. Accessed September 30, 2010.
17.
Arnone
,
A.
, and
Pacciani
,
R.
,
1995
, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,” Turbo Expo: Power for Land, Sea, and Air, Vol.
78781
,
American Society of Mechanical Engineers
, p.
V001T01A041
.
18.
Schrewe
,
S.
,
2015
, “Experimental Investigation of the Interaction Between Purge and Main Annulus Flow Upstream of a Guide Vane in a Low Pressure Turbine,” Ph.D. thesis, Université de Darmstadt, Germany.
19.
Pueblas
,
J.
,
Corral
,
R.
, and
Schrewe
,
S.
,
2013
, “
Interaction of Rim Seal and Main Annulus Flow in a Low-Speed Turbine Rig
,” Turbo Expo: Power for Land, Sea, and Air, Vol.
55225
,
American Society of Mechanical Engineers
, p.
V06AT36A003
.
20.
Crevel
,
F.
,
Gourdain
,
N.
, and
Ottavy
,
X.
,
2014
, “
Numerical Simulation of Aerodynamic Instabilities in a Multistage High-Speed High-pressure Compressor on Its Test Rig–part II: Deep Surge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101004
.
21.
Schreiber
,
J.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2017
, “
Observations on Rotating Instabilities and Spike Type Stall Inception in a High-Speed Multistage Compressor
,”
Int. J. Rotat. Mach.
,
2017
, pp.
1
11
.
22.
Jameson
,
A.
, and
Yoon
,
S.
,
1987
, “
Lower-Upper Implicit Schemes With Multiple Grids for the Euler Equations
,”
AIAA J.
,
25
(
7
), pp.
929
935
.
23.
Wilcox
,
D. C.
,
1993
, Turbulence Modeling for CFD, volume 2, DCW Industries La Canada, CA.
24.
Wein
,
L.
,
Kluge
,
T.
,
Seume
,
J. R.
,
Hain
,
R.
,
Fuchs
,
T.
,
Kähler
,
C.
,
Schmierer
,
R.
, and
Herbst
,
F.
,
2020
, “
Validation of RANS Turbulence Models for Labyrinth Seal Flows by Means of Particle Image Velocimetry
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
London, UK
,
American Society of Mechanical Engineers Digital Collection
.
25.
Mirzamoghadam
,
A.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2015
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.
26.
Perini
,
M.
,
2021
, “Etude de l’écoulement dans les cavités en sommet de roue mobile de turbine basse pression,” Ph.D. thesis, Université de Toulouse, Toulouse, France.
27.
Michalke
,
A.
,
1964
, “
On the Inviscid Instability of the Hyperbolictangent Velocity Profile
,”
J. Fluid. Mech.
,
19
(
4
), pp.
543
556
.
28.
Pardowitz
,
B.
,
Moreau
,
A.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2015
, “
Experimental Identification of Rotating Instability of an Axial Fan With Shrouded Rotor
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
229
(
5
), pp.
520
528
.
29.
Moreau
,
S.
, and
Sanjose
,
M.
,
2016
, “
Sub-Harmonic Broadband Humps and Tip Noise in Low-Speed Ring Fans
,”
J. Acoust. Soc. Am.
,
139
(
1
), pp.
118
127
.
30.
Perini
,
M.
,
Binder
,
N.
,
Bousquet
,
Y.
, and
Schwartz
,
E.
,
2021
, “
Influence of Tip Shroud Cavities on Low-Pressure Turbine Main Flow at Design and Off-Design Conditions
,”
Proceedings of 14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Gdańsk, Poland
.
You do not currently have access to this content.