Abstract

Direct numerical simulations of incompressible turbulent forced convection over irregular, anisotropic surface roughness in a pressure-driven plane channel flow have been performed. Heat transfer was simulated by solving the passive scalar transport equation with Prandtl number Pr = 0.7. The roughness topographies under investigation here are based on an X-ray computed tomography scan of an additively manufactured internal cooling passage, which had an irregular, multiscale and mildly non-Gaussian height distribution. Three different roughness topographies and three different friction Reynolds numbers (Reτ = 395, 590, 720) were considered, along with reference smooth-wall simulations at matched Reτ. By systematically varying the roughness topography and flow conditions, a direct computational assessment of aero-thermal performance (pressure losses and heat transfer) and the Reynolds analogy factor, i.e., 2Ch/Cf, where Ch is the heat-transfer coefficient (Stanton number) and Cf is the skin-friction coefficient, was conducted. The results highlight the profound impact that the roughness orientation (relative to the flow direction) has upon the aero-thermal performance of additively manufactured internal passages, with transverse-aligned roughness augmenting heat transfer by as much as 33%, relative to its streamwise-aligned counterpart. An interrogation of velocity and temperature statistics in the near-wall region was also performed, which underlined the growing dissimilarity between heat transfer and drag as fully rough conditions are approached.

References

1.
Kohlmeyer
,
R. R.
,
Blake
,
A. J.
,
Hardin
,
J. O.
,
Carmona
,
E. A.
,
Carpena-Núñez
,
J.
,
Maruyama
,
B.
,
Berrigan
,
J. D.
,
Huang
,
H.
, and
Durstock
,
M. F.
,
2016
, “
Composite Batteries: a Simple Yet Universal Approach to 3D Printable Lithium-Ion Battery Electrodes
,”
J. Mater. Chem.
,
4
(
43
), pp.
16856
16864
.
2.
Zhong
,
Y.
,
Rännar
,
L.-E.
,
Liu
,
L.
,
Koptyug
,
A.
,
Wikman
,
S.
,
Olsen
,
J.
,
Cui
,
D.
, and
Shen
,
Z.
,
2017
, “
Additive Manufacturing of 316L Stainless Steel by Electron Beam Melting for Nuclear Fusion Applications
,”
J. Nucl. Mater.
,
486
, pp.
234
245
.
3.
Gebisa
,
A. W.
, and
Lemu
,
H. G.
,
2018
, “
Additive Manufacturing for the Manufacture of Gas Turbine Engine Components: Literature Review and Future Perspectives
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
51128
,
Oslo, Norway
,
June 11–15
,
American Society of Mechanical Engineers
, p.
V006T24A021
.
4.
Sun
,
C.
,
Wang
,
Y.
,
McMurtrey
,
M. D.
,
Jerred
,
N. D.
,
Liou
,
F.
, and
Li
,
J.
,
2021
, “
Additive Manufacturing for Energy: A Review
,”
Appl. Energy
,
282
, p.
116041
.
5.
Verhoef
,
L. A.
,
Budde
,
B. W.
,
Chockalingam
,
C.
,
Nodar
,
B. G.
, and
van Wijk
,
A. J. M.
,
2018
, “
The Effect of Additive Manufacturing on Global Energy Demand: An Assessment Using a Bottom-Up Approach
,”
Energy Policy
,
112
, pp.
349
360
.
6.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Tailoring Surface Roughness Using Additive Manufacturing to Improve Internal Cooling
,”
ASME J. Turbomach.
,
142
(
7
), p.
071004
.
7.
Rott
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Casper
,
J.
,
Full
,
M.
, and
Schleifenbaum
,
J. H.
,
2020
, “
Surface Roughness in Laser Powder Bed Fusion–Interdependency of Surface Orientation and Laser Incidence
,”
Addit. Manuf.
,
36
, p.
101437
.
8.
Cabanettes
,
F.
,
Joubert
,
A.
,
Chardon
,
G.
,
Dumas
,
V.
,
Rech
,
J.
,
Grosjean
,
C.
, and
Dimkovski
,
Z.
,
2018
, “
Topography of as Built Surfaces Generated in Metal Additive Manufacturing: A Multi Scale Analysis From Form to Roughness
,”
Precis. Eng.
,
52
, pp.
249
265
.
9.
Thole
,
K. A.
,
Lynch
,
S. P.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Adv. Heat Trans
,
53
, pp.
249
325
.
10.
Busse
,
A.
, and
Jelly
,
T. O.
,
2020
, “
Influence of Surface Anisotropy on Turbulent Flow Over Irregular Roughness
,”
Flow Turb. Combust.
,
104
(
2
), pp.
331
354
.
11.
Jelly
,
T. O.
,
Ramani
,
A.
,
Nugroho
,
B.
,
Hutchins
,
N.
, and
Busse
,
A.
,
2022
, “
Impact of Spanwise Effective Slope Upon Rough-Wall Turbulent Channel Flow
,”
J. Fluid Mech.
,
951
, p.
A1
.
12.
Peeters
,
J. W. R.
, and
Sandham
,
N. D.
,
2019
, “
Turbulent Heat Transfer in Channels With Irregular Roughness
,”
Int. J. Heat Mass Transf.
,
138
, pp.
454
467
.
13.
Kuwata
,
Y.
,
2021
, “
Direct Numerical Simulation of Turbulent Heat Transfer on the Reynolds Analogy Over Irregular Rough Surfaces
,”
Int. J. Heat Fluid Fl.
,
92
, p.
108859
.
14.
Chung
,
D.
,
Hutchins
,
N.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2021
, “
Predicting the Drag of Rough Surfaces
,”
Annu. Rev. Fluid Mech.
,
53
, pp.
439
471
.
15.
Dipprey
,
D. F.
, and
Sabersky
,
R. H.
,
1963
, “
Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers
,”
Int. J. Heat Mass Transf.
,
6
(
5
), pp.
329
353
.
16.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
17.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
18.
Xia
,
Y.
,
Rowin
,
W. A.
,
Jelly
,
T. O.
,
Marusic
,
I.
, and
Hutchins
,
N.
,
2022
, “
Investigation of Cold-Wire Spatial and Temporal Resolution Issues in Thermal Turbulent Boundary Layers
,”
Int. J. Heat Fluid Fl.
,
94
, p.
108926
.
19.
Sun
,
S.
,
Brandt
,
M.
, and
Easton
,
M.
,
2017
, “2—Powder Bed Fusion Processes: An Overview,”
Laser Additive Manufacturing
(
Woodhead Publishing Series in Electronic and Optical Materials
),
M.
,
Brandt
, ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
55
77
.
20.
Leach
,
R.
,
2013
,
Characterisation of Areal Surface Texture
,
Springer
,
New York
.
21.
Busse
,
A.
,
Lützner
,
M.
, and
Sandham
,
N. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Over a Rough Surface Based on a Surface Scan
,”
Comput. Fluids
,
116
, pp.
129
147
.
22.
Townsin
,
R. L.
,
1991
, “The Correlation of Added Drag With Surface Roughness Parameters,”
Recent Developments in Turbulence Management
,
K. S. Choi, ed., Springer
, Dordrecht, Netherlands, pp.
181
191
.
23.
MacDonald
,
M.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2019
, “
Roughness Effects in Turbulent Forced Convection
,”
J. Fluid Mech.
,
861
, pp.
138
162
.
24.
Spalart
,
P. R.
,
Moser
,
R. D.
, and
Rogers
,
M. M.
,
1991
, “
Spectral Methods for the Navier-Stokes Equations With One Infinite and Two Periodic Directions
,”
J. Comp. Phys.
,
96
(
2
), pp.
297
324
.
25.
Perot
,
J. B.
,
1993
, “
An Analysis of the Fractional Step Method
,”
J. Comp. Phys.
,
108
(
1
), pp.
51
58
.
26.
Verstappen
,
R. W. C. P.
, and
Veldman
,
A. E. P.
,
2003
, “
Symmetry-Preserving Discretization of Turbulent Flow
,”
J. Comp. Phys.
,
187
(
1
), pp.
343
368
.
27.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
28.
Rouhi
,
A.
,
Chung
,
D.
, and
Hutchins
,
N.
,
2019
, “
Direct Numerical Simulation of Open-Channel Flow Over Smooth-to-Rough and Rough-to-Smooth Step Changes
,”
J. Fluid Mech.
,
866
, pp.
450
486
.
29.
Gray
,
W. G.
, and
Lee
,
P. C. Y.
,
1977
, “
On the Theorems for Local Volume Averaging of Multiphase Systems
,”
Int. J. Multiph. Flow
,
3
(
4
), pp.
333
340
.
30.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2014
, “
Roughness Effects on Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
26
(
10
), p.
101305
.
31.
Nikuradse
,
J.
,
1933
,
Laws of Flow in Rough Pipes
,
VDI Forschungsheft
.
32.
Dean
,
R. B.
,
1978
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
, pp.
215
223
.
33.
Colebrook
,
C. F.
,
Blench
,
T.
,
Chatley
,
H.
,
Essex
,
E. H.
,
Finniecome
,
J. R.
,
Lacey
,
G.
,
Williamson
,
J.
, and
Macdonald
,
G. G.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
12
(
8
), pp.
393
422
.
34.
Owen
,
P. R.
, and
Thomson
,
W. R.
,
1963
, “
Heat Transfer Across Rough Surfaces
,”
J. Fluid Mech.
,
15
(
3
), pp.
321
334
.
35.
Dipprey
,
D. F.
,
1961
, “An Experimental Investigation of Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers,” PhD. thesis,
California Institute of Technology
,
Pasadena, CA
.
36.
von Kármán
,
T.
,
1939
, “
The Analogy Between Fluid Friction and Heat Transfer
,”
Trans. ASME
,
61
, pp.
705
710
.
37.
Bons
,
J. P.
,
2002
, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
, 124(4), pp.
632
644
.
38.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55164
,
ASME
, p.
V03CT14A
.
39.
Rouhi
,
A.
,
Edrikat
,
S.
,
Modesti
,
D.
,
Sandberg
,
R. D.
,
Oda
,
T.
,
Tanimoto
,
K.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2022
, “
Riblet-Generated Flow Mechanisms that Lead to Local Breaking of Reynolds Analogy
,”
J. Fluid Mech.
,
951
, p.
A45
.
40.
Forooghi
,
P.
,
Stripf
,
M.
, and
Frohnapfel
,
B.
,
2018
, “
A Systematic Study of Turbulent Heat Transfer Over Rough Walls
,”
Int. J. Heat Mass Transf.
,
127
, pp.
1157
1168
.
41.
Clauser
,
F. H.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
,
21
(
2
), pp.
91
108
.
42.
Hama
,
F. R.
,
1954
, “
Boundary-Layer Characteristics for Smooth and Rough Surfaces
,”
Trans. Soc. Nav. Archit. Mar. Engrs
,
62
, pp.
333
358
.
43.
Rowin Abu
,
W.
,
Saurav
,
T. M.
,
Jelly
,
T. O.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2022
, “
Turbulent Forced Convection Over Roughness With Different Heights and Densities
,”
12th Australasian Heat and Mass Transfer Conference – 12AHMTC
, J
une 30–July 1
,
The University of Sydney
,
Australia
.
44.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
45.
Belnap
,
B. J.
,
Van Rij
,
J. A.
, and
Ligrani
,
P. M.
,
2002
, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transf.
,
45
(
15
), pp.
3089
3099
.
46.
Zhong
,
K.
,
Hutchins
,
N.
, and
Chung
,
D.
,
2023
, “
Heat-Transfer Scaling at Moderate Prandtl Numbers in the Fully Rough Regime
,”
J. Fluid Mech.
,
959
, p.
A8
.
47.
Jayatilleke
,
C. L. V.
,
1966
, “
The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer
,” Ph.D. thesis,
Imperial College London
,
London, UK
.
You do not currently have access to this content.