Abstract

This article documents the manifestation of a shear layer under the excitation of a series of hemispherical protuberances near the leading edge of a constant-thickness airfoil. The experiments are performed at a Reynolds number of 1.6 × 105 based on the chord length and inlet velocity, where freestream turbulence is 1.2%. The hotwire and particle image velocimetry data are analyzed to appreciate the flow feature, illustrating the growth of perturbations, vortex dynamics, intermittency, and spectral response. A laminar separation bubble (LSB) appears near the leading edge for a smooth surface, and the shear layer is inviscidly unstable. The evolution of the shear layer significantly changes with a series of protuberances. The breakdown of the shear layer occurs almost immediately, triggering local turbulence resulting in a considerable reduction of the bubble length. However, a separation bubble of varying spanwise lengths is formed in this case. Although the power spectra of velocity fluctuations reveal the selective amplification of frequencies even with protuberances, the immediate augmentation of turbulence followed by faster decay suggests the transient growth of turbulence. The study has documented insight into features of a separation bubble subjected to leading-edge perturbations and might influence future studies on separation control over an airfoil.

References

1.
Hain
,
R.
,
Kähler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
2.
Dähnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2013
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.
3.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
Effects of Freestream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Aerofoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
.
4.
Simoni
,
D.
,
Lengani
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Dellacasagrande
,
M.
,
2017
, “
Inspection of the Dynamic Properties of Laminar Separation Bubbles: Freestream Turbulence Intensity Effects for Different Reynolds Numbers
,”
Exp. Fluids
,
58
(
66
), pp.
1
14
.
5.
Istvan
,
M. S.
, and
Yarusevych
,
S.
,
2018
, “
Effects of Freestream Turbulence Intensity on Transition in a Laminar Separation Bubble Formed Over an Airfoil
,”
Exp. Fluids
,
59
(
52
), pp.
1
21
.
6.
Hosseinverdi
,
S.
, and
Fasel
,
H.
,
2019
, “
Numerical Investigation of Laminar–Turbulent Transition in Laminar Separation Bubbles: The Effect of Freestream Turbulence
,”
J. Fluid Mech.
,
858
, pp.
714
759
.
7.
Anand
,
K.
, and
Sarkar
,
S.
,
2017
, “
Features of Laminar Separated Boundary Layer Near the Leading-Edge of a Model Airfoil for Different Angles of Attack: An Experimental Study
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021201
.
8.
Rist
,
U.
, and
Augustin
,
K.
,
2006
, “
Control of Laminar Separation Bubbles Using Instability Waves
,”
AIAA J.
,
44
(
10
), pp.
2217
2223
.
9.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.
10.
Marxen
,
O.
, and
Henningson
,
D. S.
,
2011
, “
The Effect of Small-Amplitude Convective Disturbances on the Size and Bursting of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
671
, pp.
1
33
.
11.
Yang
,
S. L.
, and
Spedding
,
G. R.
,
2013
, “
Separation Control by External Acoustic Excitation at Low Reynolds Numbers
,”
AIAA J.
,
51
(
6
), pp.
1506
1515
.
12.
DeMauro
,
E. P.
,
Dell’Orso
,
H.
,
Zaremski
,
S.
,
Leong
,
C. M.
, and
Amitay
,
M.
,
2015
, “
Control of Laminar Separation Bubble on NACA 0009 Airfoil Using Electroactive Polymers
,”
AIAA J.
,
53
(
8
), pp.
2270
2279
.
13.
Michelis
,
T.
,
Yarusevych
,
S.
, and
Kotsonis
,
M.
,
2017
, “
Response of a Laminar Separation Bubble to Impulsive Forcing
,”
J. Fluid Mech.
,
820
, pp.
633
666
.
14.
Yarusevych
,
S.
, and
Kotsonis
,
M.
,
2017
, “
Steady and Transient Response of a Laminar Separation Bubble to Controlled Disturbances
,”
J. Fluid Mech.
,
813
, pp.
955
990
.
15.
Singh
,
P.
, and
Sarkar
,
S.
,
2021
, “
Excitation of Shear Layer Due to Surface Roughness Near the Leading Edge: An Experiment
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051301
.
16.
Gad-ek-Hak
,
M.
, and
Bushnell
,
D. M.
,
1991
, “
Separation Control: Review
,”
ASME J. Fluids Eng.
,
133
(
1
), pp.
5
33
.
17.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2011
, “
Turbulent Boundary Layer Separation Control and Loss Evaluation of Low Profile Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
35
(
8
), pp.
1505
1513
.
18.
Santer
,
C.
,
Gottlich
,
E.
,
Marn
,
A.
,
Hubinka
,
J.
, and
Paradiso
,
B.
,
2012
, “
The Application of Low-Profile Vortex Generators in an Intermediate Turbine Diffuser
,”
ASME J. Turbomach.
,
134
(
1
), p.
011023
.
19.
Sarkar
,
S.
,
Babu
,
H.
, and
Sadique
,
J.
,
2016
, “
Interactions of Separation Bubble With Oncoming Wakes by LES
,”
ASME J. Heat Transf.
,
138
(
2
), p.
021703
.
20.
Acarlar
,
M. S.
, and
Smith
,
C. R.
,
1987
, “
A Study of Hairpin Vortices in a Laminar Boundary Layer. Part 1. Hairpin Vortices Generated by a Hemisphere Protuberance
,”
J. Fluid Mech.
,
175
(
1
), pp.
1
41
.
21.
Klebanoff
,
P.
,
Cleveland
,
W.
, and
Tidstrom
,
K.
,
1992
, “
On the Evolution of a Turbulent Boundary Layer Induced by a Three-Dimensional Roughness Element
,”
J. Fluid Mech.
,
237
, pp.
101
187
.
22.
Johari
,
H.
,
Henoch
,
C.
,
Custodio
,
D.
, and
Levshin
,
A.
,
2007
, “
Effects of Leading-Edge Protuberances on Airfoil Performance
,”
AIAA J.
,
45
(
11
), pp.
2634
2641
.
23.
Miklosovic
,
D. S.
, and
Murray
,
M. M.
,
2007
, “
Experimental Evaluation of Sinusoidal Leading-Edges
,”
J. Aircr.
,
44
(
4
), pp.
1404
1407
.
24.
Zhang
,
M. M.
,
Wang
,
G. F.
, and
Xu
,
J. Z.
,
2014
, “
Experimental Study of Flow Separation Control on a Low-Re Airfoil Using Leading-Edge Protuberance Method
,”
Exp. Fluids
,
55
(
4
), p.
1710
.
25.
Wei
,
Z.
,
New
,
T. H.
, and
Cui
,
Y. D.
,
2015
, “
An Experimental Study on Flow Separation Control of Hydrofoils With Leading-Edge Tubercles at Low Reynolds Number
,”
Ocean Eng.
,
108
, pp.
336
349
.
26.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge
.
27.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hotwire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.
28.
Horton
,
H. P.
,
1968
, “
Laminar Separation Bubbles in Two and Three-Dimensional Incompressible Flow
,”
Ph.D. thesis
,
University of London
,
London
.
29.
Gaster
,
M.
,
1969
, “
The Structure and Behaviour of Laminar Separation Bubbles
,”
Aeronautical Division NPL, Ministry of Technology
,
London
, Reports and Memoranda No. 3595.
30.
Arena
,
A. V.
, and
Mueller
,
T. J.
,
1980
, “
Laminar Separation, Transition, and Turbulent Reattachment Near the Leading Edge of Airfoils
,”
AIAA J.
,
18
(
7
), pp.
747
753
.
31.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
,
1995
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
115
125
.
32.
Ergin
,
F. G.
, and
White
,
E. B.
,
2006
, “
Unsteady and Transitional Flows Behind Roughness Elements
,”
AIAA J.
,
44
(
11
), pp.
2504
2514
.
33.
Denissen
,
N. A.
, and
White
,
E. B.
,
2013
, “
Secondary Instability of Roughness-Induced Transient Growth
,”
Phys. Fluids
,
25
(
11
), p.
114108
.
34.
Wu
,
X.
, and
Durbin
,
P.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
35.
Samson
,
A.
,
Naicker
,
K.
, and
Diwan
,
S. S.
,
2021
, “
Instability Mechanisms and Intermittency Distribution in Adverse Pressure Gradient Attached and Separated Boundary Layers
,”
Phys. Fluids
,
33
(
9
), p.
094106
36.
Zaki
,
T.
,
Wissink
,
J.
,
Rodi
,
W.
, and
Durbin
,
P.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
37.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2014
, “
POD Analysis of the Unsteady Behavior of a Laminar Separation Bubble
,”
Exp. Therm. Fluid. Sci.
,
58
, pp.
70
79
.
38.
Lacarelle
,
A.
,
Faustmann
,
T.
,
Greenblatt
,
D.
,
Paschereit
,
C. O.
,
Lehmann
,
O.
,
Luchtenburg
,
D. M.
, and
Noack
,
B. R.
,
2009
, “
Spatiotemporal Characterization of a Conical Swirler Flow Field Under Strong Forcing
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031504
.
39.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
40.
Hinze
,
J. O.
,
1959
,
Turbulence
,
McGraw-Hill
,
New York
.
41.
Talan
,
M.
, and
Hourmouziadis
,
J.
,
2002
, “
Characteristic Regimes of Transitional Separation Bubbles in Unsteady Flow
,”
Flow Turbul. Combust.
,
69
(
3
), pp.
207
227
.
42.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
Turbo Expo: Power for Land, Sea and Air
,
Reno, NV
,
June 6–9
.
43.
Hu
,
C.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
365
422
.
44.
Hedley
,
T. B.
, and
Keffer
,
J. F.
,
1974
, “
Turbulent/Non-Turbulent Decisions in an Intermittent Flow
,”
J. Fluid Mech.
,
64
(
4
), pp.
625
644
.
45.
Dhawan
,
S.
, and
Narasimha
,
R.
,
1958
, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
,
3
(
4
), pp.
418
436
.
46.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
,
1994
, “
Effects of Freestream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME. J. Turbomach.
,
116
(
3
), pp.
392
404
.
47.
Walker
,
G. J.
, and
Gostelow
,
J. P.
,
1990
, “
Effects of Adverse Pressure Gradients on the Nature and Length of Boundary Layer Transition
,”
ASME. J. Turbomach.
,
112
(
2
), pp.
196
205
.
48.
Volino
,
R. J.
, and
Hultgren
,
L. S.
,
2000
, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME. J. Turbomach.
,
123
(
2
), pp.
189
197
.
49.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
50.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and Freestream Turbulence
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
449
457
.
51.
Katiyar
,
S.
, and
Sarkar
,
S.
,
2022
, “
Flow Transition on the Suction Surface of a Controlled-Diffusion Compressor Blade Using a Large-Eddy Simulation
,”
Phys. Fluids
,
34
(
9
), p.
094108
.
52.
Luchini
,
P.
,
2000
, “
Reynolds Number Independent Instability of the Boundary Layer Over a Flat Surface. Part 2. Optimal Perturbations
,”
J. Fluid Mech.
,
404
, pp.
289
309
.
53.
Balzer
,
W.
, and
Fasel
,
H. F.
,
2016
, “
Numerical Investigation of the Role of Freestream Turbulence in Boundary-Layer Separation
,”
J. Fluid Mech.
,
801
, pp.
289
321
.
You do not currently have access to this content.