Abstract

Transpiration cooling is able to provide more uniform coolant coverage than film cooling to effectively protect the component surface from contacting the hot gas. Due to numerous coolant ejection outlets within a small area at the target surface, the experimental thermo-fluid investigation on transpiration cooling becomes a significant challenge. Two classic methods to investigate film cooling, the steady-state foil heater method and the transient thermography technique, fail for transpiration cooling because the foil heater would block numerous coolant outlets, and the semi-infinite solid conduction model no longer holds for porous plates. In this study, a micro-lithography method to fabricate a silver coil pattern on top of the additively manufactured polymer porous media as the surface heater was proposed. The circuit was deliberately designed to cover the solid surface in a combination of series connection, and parallel connection to ensure the power in each unit cell area at the target surface was identical. With uniform heat flux generation, the steady-state tests were conducted to obtain distributions of a pair of parameters, adiabatic cooling effectiveness, and heat transfer coefficient (HTC). The results showed that the adiabatic cooling effectiveness could reach 0.65 with a blowing ratio lower than 0.5. Meanwhile, the heat transfer coefficient ratio (hf/h0) of transpiration cooling was close to 1 with a small blowing ratio at 0.125. A higher HTC ratio was observed for smaller pitch-to-diameter cases due to more turbulence intensity generated at the target surface.

References

1.
Song
,
K. D.
,
Choi
,
S. H.
, and
Scotti
,
S. J.
,
2006
, “
Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes
,”
J. Propul. Power
,
22
(
1
), pp.
96
102
.
2.
van Foreest
,
A.
,
Sippel
,
M.
,
Gülhan
,
A.
,
Esser
,
B.
,
Ambrosius
,
B.
, and
Sudmeijer
,
K.
,
2009
, “
Transpiration Cooling Using Liquid Water
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
693
702
.
3.
Huang
,
Z.
,
Zhu
,
Y.-H.
,
Xiong
,
Y.-B.
, and
Jiang
,
P.-X.
,
2014
, “
Investigation of Transpiration Cooling for Sintered Metal Porous Struts in Supersonic Flow
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
240
249
.
4.
Jiang
,
P.-X.
,
Huang
,
G.
,
Zhu
,
Y.
,
Liao
,
Z.
, and
Huang
,
Z.
,
2017
, “
Experimental Investigation of Combined Transpiration and Film Cooling for Sintered Metal Porous Struts
,”
Int. J. Heat Mass Transfer
,
108
, pp.
232
243
.
5.
Wu
,
N.
,
Wang
,
J.
,
He
,
F.
,
Dong
,
G.
, and
Tang
,
L.
,
2019
, “
An Experimental Investigation on Transpiration Cooling of a Nose Cone Model With a Gradient Porosity Layout
,”
Exp. Therm. Fluid. Sci.
,
106
, pp.
194
201
.
6.
Kim
,
M.
,
Shin
,
D. H.
,
Kim
,
J. S.
,
Lee
,
B. J.
, and
Lee
,
J.
, “
Experimental Investigation of Effusion and Transpiration air Cooling for Single Turbine Blade
,”
Appl. Therm. Eng.
,
182
, p.
116156
.
7.
Liu
,
Y.
,
Xu
,
G.
,
Luo
,
X.
,
Li
,
H.
, and
Ma
,
J.
,
2015
, “
An Experimental Investigation on Fluid Flow and Heat Transfer Characteristics of Sintered Woven Wire Mesh Structures
,”
Appl. Therm. Eng.
,
80
, pp.
118
126
.
8.
Xu
,
G.
,
Liu
,
Y.
,
Luo
,
X.
,
Ma
,
J.
, and
Li
,
H.
,
2015
, “
Experimental Investigation of Transpiration Cooling for Sintered Woven Wire Mesh Structures
,”
Int. J. Heat Mass Transfer
,
91
, pp.
898
907
.
9.
Ma
,
J.
,
Luo
,
X.
,
Li
,
H.
, and
Liu
,
Y.
,
2016
, “
An Experimental Investigation on Transpiration Cooling Based on the Multilaminated Sintered Woven Wire Mesh Structures
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031005
.
10.
Langener
,
T.
,
von Wolfersdorf
,
J.
,
Laux
,
T.
, and
Steelant
,
J.
,
2008
, “
Experimental Investigation of Transpiration Cooling With Subsonic and Supersonic Flows at Moderate Temperature Levels
,”
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Hartford, CT
,
July 21–23
.
11.
Langener
,
T.
,
Von Wolfersdorf
,
J.
,
Selzer
,
M.
, and
Hald
,
H.
,
2012
, “
Experimental Investigations of Transpiration Cooling Applied to C/C Material
,”
Int. J. Therm. Sci.
,
54
, pp.
70
81
.
12.
Langener
,
T.
,
Von Wolfersdorf
,
J.
, and
Steelant
,
J.
,
2011
, “
Experimental Investigations on Transpiration Cooling for Scramjet Applications Using Different Coolants
,”
AIAA J.
,
49
(
7
), pp.
1409
1419
.
13.
Huang
,
G.
,
Min
,
Z.
,
Yang
,
L.
,
Jiang
,
P.-X.
, and
Chyu
,
M.
,
2018
, “
Transpiration Cooling for Additive Manufactured Porous Plates With Partition Walls
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1076
1087
.
14.
Huang
,
G.
,
Zhu
,
Y.
,
Liao
,
Z.
,
Xu
,
R.
, and
Jiang
,
P.-X.
,
2019
, “
Biomimetic Self-Pumping Transpiration Cooling for Additive Manufactured Porous Module With Tree-Like Micro-Channel
,”
Int. J. Heat Mass Transfer
,
131
, pp.
403
410
.
15.
Min
,
Z.
,
Huang
,
G.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Experimental Investigation on Additively Manufactured Transpiration and Film Cooling Structures
,”
ASME J. Turbomach.
,
141
(
3
), p.
031009
.
16.
Min
,
Z.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Thermal-Fluid and Mechanical Investigations of Additively Manufactured Geometries for Transpiration Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
, American Society of Mechanical Engineers.
17.
Eriksen
,
V.
, and
Goldstein
,
R.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
J. Heat Trans.
,
96
(
2
), pp.
239
245
.
18.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
J. Eng. Power
,
90
(
4
), pp.
384
393
.
19.
Mick
,
W.
, and
Mayle
,
R.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
20.
Mehendale
,
A.
, and
Han
,
J.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
21.
Ou
,
S.
,
Han
,
J.-C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
(
4
), pp.
721
729
.
22.
Kelly
,
G. B.
, and
Bogard
,
D. G.
,
2003
, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
.
23.
Yang
,
C.-f.
, and
Zhang
,
J.-z.
,
2012
, “
Experimental Investigation on Film Cooling Characteristics From a Row of Holes With Ridge-Shaped Tabs
,”
Exp. Therm. Fluid. Sci.
,
37
, pp.
113
120
.
24.
Yang
,
W.
,
Shi
,
X.
, and
Zhang
,
J.
,
2017
, “
Experimental Investigation on Film Cooling Characteristics of Ellipse-Shaped Tab
,”
Exp. Therm. Fluid. Sci.
,
81
, pp.
277
290
.
25.
Li
,
W.
,
Lu
,
X.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2019
, “
Wall Thickness and Injection Direction Effects on Flat Plate Full-Coverage Film Cooling Arrays: Adiabatic Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Therm. Sci.
,
136
, pp.
172
181
.
26.
Kumar
,
S.
,
Rajaraman
,
S.
,
Gerhardt
,
R. A.
,
Wang
,
Z. L.
, and
Hesketh
,
P. J.
,
2005
, “
Tin Oxide Nanosensor Fabrication Using AC Dielectrophoretic Manipulation of Nanobelts
,”
Electrochim. Acta
,
51
(
5
), pp.
943
951
.
27.
Lade
,
R. K.
, Jr.
,
Hippchen
,
E. J.
,
Macosko
,
C. W.
, and
Francis
,
L. F.
,
2017
, “
Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels
,”
Langmuir
,
33
(
12
), pp.
2949
2964
.
28.
Bazaz
,
S. R.
,
Rouhi
,
O.
,
Raoufi
,
M. A.
,
Ejeian
,
F.
,
Asadnia
,
M.
,
Jin
,
D.
, and
Warkiani
,
M. E.
,
2020
, “
3D Printing of Inertial Microfluidic Devices
,”
Sci. Rep.
,
10
(
1
), pp.
1
14
.
29.
Kim
,
I.-D.
,
Rothschild
,
A.
,
Yang
,
D.-J.
, and
Tuller
,
H. L.
,
2008
, “
Macroporous TiO2 Thin Film gas Sensors Obtained Using Colloidal Templates
,”
Sens. Actuators, B
,
130
(
1
), pp.
9
13
.
30.
Fine
,
G. F.
,
Cavanagh
,
L. M.
,
Afonja
,
A.
, and
Binions
,
R.
,
2010
, “
, Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring
,”
Sensors
,
10
(
6
), pp.
5469
5502
.
31.
Lee
,
S.-G.
,
Park
,
H.-C.
,
Pandita
,
S. D.
, and
Yoo
,
Y.
,
2006
, “
Performance Improvement of IPMC (Ionic Polymer Metal Composites) for a Flapping Actuator
,”
Int. J. Control Autom. Syst.
,
4
(
6
), pp.
748
755
.
32.
Min
,
Z.
,
Gudarzi
,
M.
, and
Wang
,
Q.-M.
,
2017
, “
Modeling, Fabrication and Analysis of a Flexible PZT-Polymer Laminated Composite Cantilever Beam in Sensing and Actuation Modes
,”
2017 IEEE International Ultrasonics Symposium (IUS)
,
Washington, DC
,
Sept. 6–9
, IEEE.
33.
Adachi
,
H.
,
Takenouchi
,
A.
,
Fukada
,
T.
,
Uehara
,
H.
, and
Takemura
,
Y.
,
1997
,
Method of Manufacturing a Thin Film Transistor in Which the Gate Insulator Comprises two Oxide Films. U.S. Patent 5,663,077
.
34.
Lim
,
S.
,
Kwon
,
S.-J.
,
Kim
,
H.
, and
Park
,
J.-S.
,
2007
, “
High Performance Thin Film Transistor With Low Temperature Atomic Layer Deposition Nitrogen-Doped ZnO
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183517
.
35.
Brauckmann
,
D.
, and
von Wolfersdorf
,
J.
,
2005
, “
Application of Steady State and Transient IR-Thermography Measurements to Film Cooling Experiments for a Row of Shaped Holes
,”
Turbo Expo: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
.
36.
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Ceccherini
,
A.
,
2010
, “
Adiabatic and Overall Effectiveness Measurements of an Effusion Cooling Array for Turbine Endwall Application
,”
ASME J. Turbomach.
,
132
(
4
), p.
041008
.
37.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
Vol. 3
,
McGraw-Hill
,
New York
.
38.
Metzger
,
D.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
,
1973
, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
J. Eng. Power
,
95
(
3
), pp.
180
184
.
39.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.
40.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2010
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner: Part 1—Experimental Analysis
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
.
You do not currently have access to this content.