Abstract

The use of radial-inflow turbine (RIT) for organic Rankine cycle (ORC) plant sizes below 100 kW is promising, although the application remains challenging. In fact, the single-stage arrangement imposed by economic constraints and hence the large expansion ratio, together with the large molecular weight, which characterizes organic fluids, usually result in highly supersonic flows, so making the use of transonic stators often mandatory.

Particularly, the influence of RIT stator design parameters on losses and the level of unsteadiness seen by the subsequent rotor is still scarcely addressed in published literature.

The present work investigates the effect of the convergent–divergent stators design parameters and the resulting downstream flow field non-uniformity on the unsteady stator–rotor interaction and loss generation in ORC RIT.

To this end, two stator and rotor configurations which differ by the stator design parameters (i.e., discharge metal angle and number of vanes) have been tested by means of three-dimensional (3D) unsteady CFD calculations accounting for real-gas properties.

The results show that larger stator–rotor interaction is present for the case featuring higher vane count and lower outlet metal, which also features the largest fluctuations of power output and pressure force on blade, together with a substantially lower average total-to-static efficiency, as a result of a larger stator downstream pitchwise non-uniformity.

Ultimately, the results indicate that only aiming for optimal stator efficiency during the stator design phase might lead to highly suboptimal configurations from the whole turbine stage point of view.

References

1.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME. J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.
2.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
,
Moazami
,
N.
, and
Mirhadizadeh
,
S. A.
,
2017
, “
Review of Organic Rankine Cycle for Small-Scale Applications
,”
Energy Convers. Manage.
,
134
, pp.
135
155
.
3.
Robertson
,
M. C.
,
Costall
,
A. W.
,
Newton
,
P. J.
, and
Martinez-Botas
,
R. F.
,
2016
, “
Radial Turboexpander Optimization Over Discretized Heavy-Duty Test Cycles for Mobile Organic Rankine Cycle Applications
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-56754.
4.
Fiaschi
,
D.
,
Innocenti
,
G.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2016
, “
Design of Micro Radial Turboexpanders for ORC Power Cycles: From 0D to 3D
,”
Appl. Therm. Eng.
,
99
, pp.
402
410
.
5.
Turunen-Saaresti
,
T.
,
Uusitalo
,
A.
, and
Honkatukia
,
J.
,
2017
, “
Design and Testing of High Temperature Micro-ORC Test Stand Using Siloxane as Working Fluid
,”
J. Phys.: Conf. Ser.
,
821
, p.
012024
.
6.
Pini
,
M.
,
De Servi
,
C.
,
Burigana
,
M.
,
Bahamonde
,
S.
,
Rubino
,
A.
,
Vitale
,
S.
, and
Colonna
,
P.
,
2017
, “
Fluid-Dynamic Design and Characterization of a Mini-ORC Turbine for Laboratory Experiments
,”
Energy Procedia
,
129
, pp.
1141
1148
.
7.
Nguyen
,
V. M.
,
Doherty
,
P. S.
, and
Riffat
,
S. B.
,
2001
, “
Development of a Prototype Low-Temperature Rankine Cycle Electricity Generation System
,”
Appl. Therm. Eng.
,
21
(
2
), pp.
169
181
.
8.
Pei
,
G.
,
Li
,
J.
,
Li
,
Y.
,
Wang
,
D.
, and
Ji
,
J.
,
2011
, “
Construction and Dynamic Test of a Small-Scale Organic Rankine Cycle
,”
Energy
,
36
(
5
), pp.
3215
3223
.
9.
Li
,
M.
,
Wang
,
J.
,
He
,
W.
,
Gao
,
L.
,
Wang
,
B.
,
Ma
,
S.
, and
Dai
,
Y.
,
2013
, “
Construction and Preliminary Test of a Low-Temperature Regenerative Organic Rankine Cycle (ORC) Using R123
,”
Renewable Energy
,
57
, pp.
216
222
.
10.
Kang
,
S. H.
,
2012
, “
Design and Experimental Study of ORC (Organic Rankine Cycle) and Radial Turbine Using R245fa Working Fluid
,”
Energy
,
41
(
1
), pp.
514
524
.
11.
Fiaschi
,
D.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2012
, “
Thermo-Fluid Dynamics Preliminary Design of Turbo-Expanders for ORC Cycles
,”
Appl. Energy
,
97
, pp.
601
608
.
12.
Thompson
,
P. A.
,
1971
, “
A Fundamental Derivative in Gasdynamics
,”
Phys. Fluids
,
14
(
9
), p.
1843
.
13.
Quoilin
,
S.
,
Van Den Broek
,
M.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
14.
Kang
,
S. H.
,
2016
, “
Design and Preliminary Tests of ORC (Organic Rankine Cycle) With Two-Stage Radial Turbine
,”
Energy
,
96
, pp.
142
154
.
15.
Astolfi
,
M.
,
Martelli
,
E.
, and
Pierobon
,
L.
,
2017
, “7—Thermodynamic and Technoeconomic Optimization of Organic Rankine Cycle Systems,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
173
249
.
16.
Cappiello
,
A.
, and
Tuccillo
,
R.
,
2020
, “
Design and CFD Analysis of a Radial-Inflow Turbine for Small Scale ORC Applications
,”
Proceedings of 75th National ATI Congress—#7 Clean Energy for all (ATI 2020)
,
Roma, Italy
,
Sept. 15–16
, pp.
1
15
.
17.
Reichert
,
A. W.
, and
Simon
,
H.
,
1997
, “
Design and Flow Field Calculations for Transonic and Supersonic Radial Inflow Turbine Guide Vanes
,”
ASME J. Turbomach.
,
119
(
1
), pp.
103
113
.
18.
White
,
M. T.
,
Markides
,
C. N.
, and
Sayma
,
A. I.
,
2018
, “
Working-Fluid Replacement in Supersonic Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091703
.
19.
Anand
,
N.
,
Vitale
,
S.
,
Pini
,
M.
,
Otero
,
G. J.
, and
Pecnik
,
R.
,
2019
, “
Design Methodology for Supersonic Radial Vanes Operating in Nonideal Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022601
.
20.
Wheeler
,
A. P.
, and
Ong
,
J.
,
2013
, “
The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102603
.
21.
Harinck
,
J.
,
Pasquale
,
D.
,
Pecnik
,
R.
,
van Buijtenen
,
J.
, and
Colonna
,
P.
,
2013
, “
Performance Improvement of a Radial Organic Rankine Cycle Turbine by Means of Automated Computational Fluid Dynamic Design
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
227
(
6
), pp.
637
645
.
22.
Cappiello
,
A.
, and
Tuccillo
,
R.
,
2021
, “
Design Parameters Influence on Losses and Downstream Flow Field Uniformity in Supersonic ORC Radial-Inflow Turbine Stators
,”
Int. J. Turbomach. Propul. Power
,
6
(
3
), p.
38
.
23.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2016
, “
Unsteady Operation of a Highly Supersonic Organic Rankine Cycle Turbine
,”
ASME J. Turbomach.
,
138
(
12
), p.
121010
.
24.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.
25.
Aungier
,
R. H.
,
2006
, “Preliminary Aerodynamic Design of Radial-Inflow Turbine Stages,”
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
,
ASME
,
New York
.
26.
Baumgärtner
,
D.
,
Otter
,
J. J.
, and
Wheeler
,
A. P.
,
2020
, “
The Effect of Isentropic Exponent on Transonic Turbine Performance
,”
ASME J. Turbomach.
,
142
(
8
), p.
081007
.
27.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “NIST Standard Reference Database 23,” Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.
28.
Spinelli
,
A.
,
Cammi
,
G.
,
Gallarini
,
S.
,
Zocca
,
M.
,
Cozzi
,
F.
, and
Gaetani
,
P.
,
2018
, “
Experimental Evidence of Non-ideal Compressible Effects in Expanding Flow of a High Molecular Complexity Vapor
,”
Exp. Fluids
,
59
(
8
), pp.
1
16
.
You do not currently have access to this content.