Abstract

The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.

References

1.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
2.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
. 10.1115/1.2162183
3.
Zhou
,
C.
, and
Hodson
,
H.
,
2011
, “
The Tip Leakage Flow of an Unshrouded High-Pressure Turbine Blade With Tip Cooling
,”
ASME J. Turbomach.
,
133
(
4
), p.
041028
. 10.1115/1.4001174
4.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
, Vol.
7
,
Paper No. GT2009-59909
.
5.
Mercan
,
B.
,
Ostovan
,
Y.
,
Dogan
,
E.
, and
Uzol
,
O.
,
2012
. “
Experimental Investigation of the Effects of Waveform Tip Injection in a Low Pressure Turbine Cascade,” ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
ASME
Paper No. GT2012-69316
. 10.1115/gt2012-69316
6.
Volino
,
J. R.
,
2017
, “
Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing
,”
ASME J. Turbomach.
,
139
(
6
), p.
061008
. 10.1115/1.4035509
7.
Wang
,
J.
,
Sunden
,
B.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2015
, “
Film Cooling Effects on the Tip Flow Characteristics of a Gas Turbine Blade
,”
Propul. Power Res.
,
4
(
1
), pp.
9
22
. 10.1016/j.jppr.2015.02.003
8.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
. 10.1115/1.4029120
9.
Lomakin
,
N.
,
Garnovskiy
,
A.
,
Belkanov
,
V.
, and
Szwedowicz
,
J.
,
2013
, “
Effect of Common Blade Tip Squealer Designs in Terms of Tip Clearance Loss Control,” ASME Turbine Blade Tip Symposium, ASME 2013 Turbine Blade Tip Symposium
,
ASME
Paper No. V001T03A005
. 10.1115/tbts2013-2040
10.
Zhong
,
F.
, and
Zhou
,
C.
,
2017
, “
Effects of Tip Gap Size on the Aerodynamic Performance of a Cavity-Winglet Tip in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
10
), p.
101009
. 10.1115/1.4036677
11.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
. 10.1115/1.1308567
12.
Azad
,
G. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
725
732
. 10.1115/1.1311284
13.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Flow and Heat Transfer Predictions for a Flat-Tip Turbine Blade
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, Vol.
3
,
ASME
Paper no. GT2002-30190
, pp.
271
283
. 10.1115/gt2002-30190
14.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
669
667
. 10.1115/1.1571849
15.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2002
, “
Heat-Transfer Coefficients of a Turbine Blade Tip and Near Tip Regions
,”
AIAA-2002-3012, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
.
16.
Yang
,
D.
, and
Feng
,
Z.
,
2007
, “
Tip Leakage Flow and Heat Transfer Predictions for Turbine Blades
,”
ASME Turbo Expo 2007
, Vol.
4
,
ASME
Paper No. GT2007-27728
. 10.1115/gt2007-27728
17.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part 1: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
. 10.1115/1.2950068
18.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part 3: Tip Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011008
. 10.1115/1.2950060
19.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), p.
021020
. 10.1115/1.4003085
20.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling With Blade Rotation: Part I—Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
. 10.1115/1.4032672
21.
Saha
,
A. K.
,
Acharya
,
S.
,
Bunker
,
R.
, and
Prakash
,
C.
,
2006
, “
Blade Tip Leakage Flow and Heat Transfer With Pressure-Side Winglet
,”
Int. J. Rotating Mach.
,
2006
, pp.
1
15
. 10.1155/ijrm/2006/17079
22.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
. 10.1115/1.4026001
23.
Mayle
,
R. E.
, and
Metzger
,
D. E.
,
1982
, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the 7th International Heat Transfer Conference
,
Munich, Germany
,
Sept. 6–10
, pp.
87
92
.
24.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
. 10.1115/1.2952378
25.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
. 10.1115/1.4028796
26.
Ansys Inc.
,
2017
,
Ansys® CFX Theory Guide
,
Release 18.1
,
Canonsburg, PA
.
27.
Vetta
,
A. B.
,
Giel
,
P. W.
, and
Welch
,
G. E.
,
2012
, “
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
,”
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2012-3879
,
Atlanta, GA
,
July 30–Aug. 1
, p.
218070
.
28.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
John Wiley & Sons, Inc.
,
New York
.
You do not currently have access to this content.