An investigation to characterize the effect of entrainment in a confined jet impingement arrangement is presented. The investigated configuration shows an impingement-cooled turbine blade passage and holds two staggered rows of inclined impingement jets. In order to distinctly promote thermal entrainment phenomena, the jets were heated separately. A steady-state liquid crystal technique was used to obtain near-wall fluid temperature distributions for the impingement surfaces under adiabatic conditions. Additionally, flow field measurements were undertaken using particle image velocimetry (PIV). Furthermore, compressible Reynolds-averaged Navier–Stokes (RANS) simulations carried out with ansys cfx using Menter's shear stress transport (SST) turbulence model accompany the experiments. Distributions of effectiveness, velocity, and turbulent kinetic energy detail the complexity of the aerothermal situation. The study was conducted for a jet Reynolds number range from 10,000 to 45,000. The experimental and numerical results are generally in good agreement. Nevertheless, the simulations predict flow features in particular regions of the geometry that are not as prominent in the experiments. These affect the effectiveness distributions, locally. The investigations reveal that the effectiveness is independent of the temperature difference between the heated and cold jet as well as the jet Reynolds number.

References

1.
Poreh
,
M.
, and
Cermak
,
J. E.
,
1959
, “
Flow Characteristics of a Circular Submerged Jet Impinging Normally on a Smooth Boundary
,”
6th Midwestern Conference on Fluid Mechanics
, pp.
198
212
.
2.
Gardon
,
R.
, and
Cobonpue
,
J.
,
1962
, “
Heat Transfer Between a Flate Plate and Jets of Air Impinging on It
,”
International Development in Heat Transfer, 2nd International Heat Transfer Conference
, ASME, New York, pp.
454
460
.
3.
Gauntner
,
J. W.
,
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,”
Report No. NASA TN D-5652
.
4.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol. 13,
Academic Press
,
New York
, pp.
1
60
.
5.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. New York Acad. Sci.
,
934
, pp.
147
161
.
6.
Bouchez
,
J.-P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.
7.
Folayan
,
C. O.
, and
Whitelaw
,
J. H.
,
1977
, “
Impingement Cooling and its Application to Combustor Design
,”
ASME-JSME Joint Gas Turbine Congress
, Tokyo,
ASME
Paper No. 7.
8.
Hollworth
,
B. R.
, and
Wilson
,
S. I.
,
1984
, “
Entrainment Effects on Impingement Heat Transfer: Part I-Measurements of Heated Jet Velocity and Temperature Distributions and Recovery Temperatures on Target Surface
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
797
803
.
9.
Goldstein
,
R. J.
,
Sobolik
,
K. A.
, and
Seol
,
W. S.
,
1990
, “
Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
608
611
.
10.
Baughn
,
J. W.
,
Hechanova
,
A. E.
, and
Xiaojun
Yan
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
1023
1025
.
11.
Hollworth
,
B. R.
, and
Gero
,
L. R.
,
1985
, “
Entrainment Effects on Impingement Heat Transfer: Part II-Local Heat Transfer Measurements
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
910
915
.
12.
Goldstein
,
R. J.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
.
13.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.
14.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
,
1984
, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
34
41
.
15.
Florschuetz
,
L. W.
, and
Su
,
C. C.
,
1987
, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
74
82
.
16.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment—I. Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2675
2684
.
17.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.
18.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2004
, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
,
36
(
6
), pp.
946
958
.
19.
Geers
,
L. F. G.
,
Hanjalić
,
K.
, and
Tummers
,
M. J.
,
2006
, “
Wall Imprint of Turbulent Structures and Heat Transfer in Multiple Impinging Jet Arrays
,”
J. Fluid Mech.
,
546
, pp.
255
284
.
20.
Naik
,
S.
, and
Wardle
,
B. K.
,
2009
, “
Gas Turbine Airfoil
,” Alstom Technology Ltd.,
European Patent Application No. EP2107215
.
21.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2009
, “
Heat Transfer in a Confined Oblique Jet Impingement Configuration
,”
ASME
Paper No. GT2009-59354.
22.
Schulz
,
S.
,
Schueren
,
S.
, and
Von Wolfersdorf
,
J.
,
2014
, “
A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration
,”
ASME J. Turbomach.
,
136
, p.
051009
.
23.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
, 2nd ed.,
Springer
,
Berlin
.
24.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
The Effect of Sample Size, Turbulence Intensity and the Velocity Field on the Experimental Accuracy of Ensemble Averaged PIV Measurements
,”
4th International Symposium on Particle Image Velocimetry
, Goettingen, Germany, Sept. 17–19.
25.
Baughn
,
J. W.
,
1995
, “
Liquid Crystal Methods For Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
365
375
.
26.
Pape
,
D.
, and
Weigand
,
B.
,
2004
, “
The Influence of Repeated Transient Heat Transfer Tests on the Measurement Accuracy
,” Paper No. ISROMAC10-2004-074.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
28.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
6
), pp.
565
631
.
29.
Celik
, I
. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
You do not currently have access to this content.