Heat transfer parameters are the most critical variables affecting turbine blade life. Therefore, accurately predicting heat transfer parameters is essential. In this study, for precise prediction of the blade temperature distribution, a conjugate heat transfer procedure is used. This procedure involves three different physical aspects: flow and heat transfer in external domain and internal cooling passages and conduction within metal blade. For the external flow simulation and conduction within metal, three-dimensional solvers are used. However, three-dimensional modeling of blade cooling passages is time-consuming because of complex cooling passage geometries. Therefore, in the current work, a one-dimensional network method is used for the simulation of cooling passages. For validation of the numerical procedure, simulation results are compared with the available experimental data for a C3X vane. Results show good agreement against experimental data. The present paper investigates uncertainties of some parameters that affect turbine blade heat transfer, namely, (1) turbine inlet temperature and pressure, (2) upstream stator coolant mass flow rate and temperature, (3) rotor shroud heat transfer coefficient and fluid temperature over shroud, (4) rotor coolant inlet pressure and temperature (as a result of secondary air system), (5) blade metal thermal conductivity, and (6) blade coating thickness and thermal conductivity. Results show that turbine inlet temperature, pressure drop and temperature rise in the secondary air system (SAS) and coating parameters have significant effect on the blade temperature.

References

1.
Bohn
,
D. E.
, and
Tummers
,
C.
,
2003
, “
Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barrier Coated Turbine Guide Vane With Reduced Cooling Fluid Mass Flow
,”
ASME
Paper No. GT2003-38431.10.1115/GT2003-38431
2.
York
,
W. D.
, and
Leyek
,
J. H.
,
2003
, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally Cooled Gas Turbine Vane
,”
ASME
Paper No. GT2003-38551.10.1115/GT2003-38551
3.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2007
, “
Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the v2-f Turbulence Model
,”
ASME J. Turbomach.
,
129
, pp.
773
781
.10.1115/1.2720483
4.
Ledezma
,
G. A.
,
Laskowsky
,
G. M.
, and
Tolpadi
,
A. K.
,
2008
, “
Turbulence Model Assessment for Conjugate Heat Transfer in a High Pressure Turbine Vane Model
,”
ASME
Paper No. GT2008-50498.10.1115/GT2008-50498
5.
Wang
,
Z.
,
Yan
,
P.
,
Guo
,
Z.
, and
Han
,
W.
,
2008
, “
BEM/FDM Conjugate Heat Transfer Analysis of a Two-Dimensional Air-Cooled Turbine Blade Boundary Layer
,”
J. Thermal Sci.
,
17
(
3
), pp. 199–206.10.1007/s11630-008-0199-2
6.
Qiang
,
W.
,
Zhaoyuan
,
G.
,
Chi
,
Z.
,
Guotai
,
F.
, and
Zhongqi
,
W.
,
2009
, “
Coupled Heat Transfer Simulation of a High-Pressure Turbine Nozzle Guide Vane
,”
Chin. J. Aeronaut.
,
22
, pp.
230
236
.10.1016/S1000-9361(08)60092-8
7.
Wang
,
Z.
,
Yan
,
P.
,
Huang
,
H.
, and
Han
,
W.
,
2009
, “
Coupled BEM and FDM Conjugate Analysis of a Three-Dimensional Air-Cooled Turbine Vane
,”
ASME
Paper No. GT2009-59030.10.1115/GT2009-59030
8.
Bohn
,
D.
,
Kusterer
,
K.
, and
Tanaka
,
T. S. R.
,
2004
, “
Conjugate Calculations for a Film-Cooled Blade Under Different Operating Conditions
,”
ASME
Paper No. GT2004-53719.10.1115/GT2004-53719
9.
Sipatov
,
A.
,
Gomzikov
,
L.
,
Latyshev
,
V.
, and
Gladysheva
,
N.
,
2009
, “
Three Dimensional Heat Transfer Analysis of High Pressure Turbine
,”
ASME
Paper No. GT2009-59163.10.1115/GT2009-59163
10.
Mangani
,
L.
,
Cerutti
,
M.
,
Maritano
,
M.
, and
Spel
,
M.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME
Paper No. GT2010-23458.10.1115/GT2010-23458
11.
Ni
,
R. H.
,
Humber
,
W.
,
Fan
,
G.
,
Johnson
,
P. D.
,
Downs
,
J.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2011
, “
Conjugate Heat Transfer Analysis of a Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2011-45920.10.1115/GT2011-45920
12.
Dewey
,
R.
, and
Hulshof
,
H.
,
2000
,
Combustion Turbine F-Class Life Management: General Electric FA First Stage Blade Analysis
,
EPRI Solutions
,
Palo Alto, CA
.
13.
Zecchi
,
S.
,
Arcangeli
,
L.
,
Facchini
,
B.
, and
Coutandin
,
D.
,
2004
, “
Features of a Cooling System Simulation Tool Used in Industrial Preliminary Design Stage
,”
ASME
Paper No. GT2004-53547.10.1115/GT2004-53547
14.
Takahashi
,
T.
,
Watanabe
,
K.
, and
Sakai
,
T.
,
2005
, “
Conjugate Heat Transfer Analysis of a Rotor Blade With Rib-Roughened Internal Cooling Passages
,”
ASME
Paper No. GT2005-68227.10.1115/GT2005-68227
15.
Coutandin
,
D.
,
Taddei
,
S.
, and
Facchini
,
B.
,
2006
, “
Advanced Double Wall Cooling System Development for Turbine Vanes
,”
ASME
Paper No. GT2006-90784.10.1115/GT2006-90784
16.
Amaral
,
S.
,
Verstraete
,
T.
,
Braembussche
,
R. V. D.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part I: Methodology
,”
ASME J. Turbomach.
,
132
, pp.
021013
.10.1115/1.3104614
17.
Haubert
,
R. C.
,
Hsia
Sr
.
,
E.
,
Maclin
,
H. M.
,
Noe
,
M. E.
, and
Brooks
,
R. O.
,
1980
, “
High Pressure Turbine Blade Life Sensitivity
,”
AIAA
Paper No. 80-1112.10.2514/6.1980-1112
18.
Roos
,
T
.,
2005
, “
NGV Trailing Edge Ejection Slot Size Sensitivity Study
,” Paper No. ISABE-2005-1158.
19.
Espinosa
,
F.
,
Portugal
,
A.
,
Narzary
,
D.
,
Cadena
,
F.
,
Han
,
J.
,
Kubiak
,
J.
,
Blake
,
S.
, and
Lara
,
H.
,
2008
, “
Influence of Cooling Flow Rate Variation on Gas Turbine Blade Temperature Distributions
,”
ASME
Paper No. GT2008-50103.10.1115/GT2008-50103
20.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
, 1983, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Report No. CR-168015.
21.
Meitner
,
P. L.
,
1990
, “
Computer Code for Predicting Coolant Flow and Heat Transfer in Turbomachinery
,” NASA TP-2985, AVSCOM TP 89-C-008.
22.
Meitner
,
P. L.
,
2003
, “
Procedure for Determining 1-D Flow Distributions in Arbitrarily Connected Passages Without the Influence of Pumping
,”
ASME
Paper No. GT2003-38061.10.1115/GT2003-38061
23.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
, 2010, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane With 90 Degree Rib Turbulators
,”
ASME
Paper No. GT2010-23004.10.1115/GT2010-23004
24.
Bianchini
,
C.
,
Facchini
,
B.
,
Mangani
,
L.
, and
Maritano
,
M.
,
2008
, “
Generic Grid Interface Development and Application to Conjugate Heat Transfer Analysis
,”
Open Source CFD International Conference
, Berlin, December 4–5.
25.
Facchini
,
B.
,
Bianchini
,
C.
, and
Mangani
,
L.
,
2009
, “
Conjugate Heat Transfer Analysis of an Internally Cooled Turbine Blade With an Object Oriented CFD Code
,”
Eighth European Conference on Turbomachinery
,
Graz, Austria
, March 23–27.
26.
Brown
,
W. F.
,
Mindlin
,
H.
, and Ho, C. Y.,
1997
,
Aerospace Structural Metals Handbook
CINDAS/USAF CRDA Handbooks Operation, Purdue University
, West Lafayette, IN.
27.
Han
,
J. C.
, and
Chandra
,
P. R.
,
1988
, “
Local Heat/Mass Transfer and Pressure Drop Two-Pass Rib-Roughened Channel for Turbine Airfoil Cooling
,” NASA Technical Report, NASA CR-1 79635 2 AVSCOM TR-87-C-14.
28.
Yeh
,
F. C.
, and
Stepka
,
F. S.
,
1984
, “
Review and Status of Heat-Transfer Technology for Internal Passages of Air-Cooled Turbine Blades
,” NASA Technical Paper, NASA TP-2232.
29.
Maldonado
,
J. J.
,
1994
, “
Numerical Comparison of Convective Heat Transfer Augmentation Devices Used in Cooling Channels of Hypersonic Vehicles
,” NASA-TM- 106546.
30.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters
,” NASA Technical Report, NASA CR-4015 AVSCOM TR-86-C-25.
31.
Sundberg
,
J.
, 2006, “
Heat Transfer Correlations for Gas Turbine Cooling,” M.Sc. thesis, Linköping University, Linköping, Sweden.
32.
Crawford
,
N. M.
,
Cunningham
,
G.
, and
Spedding
,
P. L.
,
2003
, “
Prediction of Pressure Drop for Turbulent Fluid Flow in 90 Degree Bends
,”
J. Process Mech. Eng.
,
217
, pp. 153–155.10.1243/095440803322328827
33.
Mori
,
Y.
, and
Nakayama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes (2nd Report, Turbulent Region)
,”
Int. J. Heat Mass Transfer
,
10
, pp.
37
59
.10.1016/0017-9310(67)90182-2
34.
Brigham
,
B. A.
,
1985
, “
The Effect of Channel Convergence in a Heat Transfer in a Passage With Short Pin Fins
,” NASA-TM-83801.
35.
Damerow
,
W. P.
,
Murtaugh
,
J. P.
, and
Burggraf
,
F.
,
1972
, “
Experimental and Analytical Investigation of the Coolant Flow Characteristics in Cooled Turbine Airfoils
,” NASA Technical Paper, NASA-CR-120883.
36.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
, pp.
314
319
.10.1115/1.2841408
37.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
, pp.
196
205
.10.1115/1.2103094
38.
Brink
,
R. C.
,
1989
, “
Material Property Evaluation of Thick Thermal Barrier Coating Systems
,”
ASME J. Eng. Gas Turb. Power
,
111
, pp.
570
577
.10.1115/1.3240292
39.
Lu
,
T. J.
,
Levi
,
C. G.
,
Wadley
,
H. N. G.
, and
Evans
,
A. G.
,
2001
, “
Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition
,”
J. Am. Ceramic Soc.
,
84
(
12
), pp.
2937
2946
.10.1111/j.1151-2916.2001.tb01118.x
You do not currently have access to this content.