This paper presents measurements of the instability and transition processes in separation bubbles under a three-dimensional freestream pressure distribution. The measurements are performed on a flat plate on which a pressure distribution is imposed by a contoured surface facing the flat test-surface. The three-dimensional pressure distribution that is established on the test-surface approximates the pressure distributions encountered on swept blades. This type of pressure field produces crossflows in the laminar boundary layer upstream of the separation and within the separation bubble. The effects of these crossflows on the instability of the upstream boundary layer and on the instability, transition onset, and transition rate within the separated shear-layer are examined. The measurements are performed at two flow-Reynolds numbers and relatively low level of freestream turbulence. The results of this experimental study show that the three-dimensional freestream pressure field and the corresponding redistribution of the freestream flow can cause significant spanwise variation in the separation-bubble structure. It is demonstrated that the instability and transition processes in the modified separation bubble develop on the basis of the same fundamentals as in two-dimensional separation bubbles and can be predicted with the same level of accuracy using models that have been developed for two-dimensional separation bubbles.

1.
Turner
,
A. B.
, 1971, “
Local Heat Transfer Measurements on a Gas Turbine Blade
,”
J. Mech. Eng. Sci.
0022-2542,
13
(
1
), pp.
1
12
.
2.
Gaster
,
M.
, 1967, “
The Structure and Behavior of Laminar Separation-Bubbles
,” ARC R&M Report No. 3595.
3.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 1994, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
392
404
.
4.
Hatman
,
A.
, and
Wang
,
T.
, 1998, “
Separated Flow Transition Part 1—Experimental Methodology and Classification of Separation Bubbles
,” ASME Paper No. 98-GT-461.
5.
Hatman
,
A.
, and
Wang
,
T.
, 1998, “
Separated Flow Transition Part 2—Experimental Results
,” ASME Paper No. 98-GT-462.
6.
Watmuff
,
J. H.
, 1999, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
0022-1120,
397
, pp.
119
169
.
7.
Volino
,
R. J.
, and
Hultgren
,
L. S.
, 2000, “
Measurements in Separated and Transitional Boundary Layers Under Low Pressure Turbine Airfoil Conditions
,” ASME Paper No. 2000-GT-0260.
8.
Lou
,
W.
, and
Hourmouziadis
,
J.
, 2000, “
Separation-Bubbles Under Steady and Periodic Unsteady Main Flow Conditions
,” ASME Paper No. 2000-GT-0270.
9.
Yaras
,
M. I.
, 2001, “
Measurements of the Effects of Pressure-Gradient History on Separation-Bubble Transition
,” ASME Paper No. 2001-GT-0193.
10.
Yaras
,
M. I.
, 2002, “
Measurements of the Effects of Freestream Turbulence on Separation-Bubble Transition
,” ASME Paper No. GT-2002-30232.
11.
Rist
,
U.
, and
Maucher
,
U.
, 2002, “
Investigations of Time-Growing Instabilities in Laminar Separation Bubbles
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
495
509
.
12.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Effects of Periodic Unsteadiness, Free-Stream Turbulence and Flow Reynolds Number on Separation-Bubble Transition
,” ASME Paper No. GT2003-38626.
13.
Volino
,
R. J.
, and
Murawski
,
C. G.
, 2003, “
Separated-Flow Transition in a Low Pressure Turbine Cascade—Mean Flow and Turbulence Spectra
,” ASME Paper No. GT2003-38727.
14.
Lang
,
M.
,
Rist
,
U.
, and
Wagner
,
S.
, 2004, “
Investigations on Controlled Transition Development in a Laminar Separation Bubble by Means of LDA and PIV
,”
Exp. Fluids
0723-4864,
36
, pp.
384
392
.
15.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
449
457
.
16.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2005, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,” ASME Paper No. GT2005-68663.
17.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Effects of Surface Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
349
356
.
18.
Alam
,
M.
, and
Sandham
,
N. D.
, 2000, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
0022-1120,
403
, pp.
223
250
.
19.
Yang
,
Z.
, and
Voke
,
P. R.
, 2001, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
0022-1120,
439
, pp.
305
333
.
20.
Wissink
,
J. G.
, and
Rodi
,
W.
, 2002, “
DNS of Transition in a Laminar Separation Bubble
,”
Advances in Turbulence IX: Proceedings of the Ninth European Turbulence Conference
,
I. P.
Castro
and
P. E.
Hancock
, eds.,
Kluwer Academic
,
Southampton, UK
.
21.
Wissink
,
J. G.
, and
Rodi
,
W.
, 2003, “
DNS of a Laminar Separation Bubble in the Presence of Oscillating External Flow
,”
Flow, Turbul. Combust.
1386-6184,
71
, pp.
311
331
.
22.
Abdalla
,
I. E.
, and
Yang
,
Z.
, 2004, “
Numerical Study of the Instability Mechanism in Transitional Separating-Reattaching Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
593
605
.
23.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
232
238
.
24.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2008, “
Numerical Study of Turbulent-Spot Development in a Separated Shear Layer
,”
ASME J. Turbomach.
0889-504X,
130
(
4
), p.
041018
.
25.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2010, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
0889-504X,
132
(
1
), p.
011004
.
26.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Modeling Transition in Separated and Attached Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
402
411
.
27.
Pullan
,
G.
, and
Harvey
,
N. W.
, 2007, “
Influence of Sweep on Axial Flow Turbine Aerodynamics at Midspan
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
591
598
.
28.
Horton
,
H. P.
, 1968, “
Laminar Separation Bubbles in Two- and Three-Dimensional Incompressible Flows
,” Ph.D. thesis, University of London.
29.
Davis
,
R. L.
,
Carter
,
J. E.
, and
Reshotko
,
E.
, 1987, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,”
AIAA J.
0001-1452,
25
(
3
), pp.
421
428
.
30.
Roberts
,
W. B.
, 1980, “
Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance
,”
AIAA J.
0001-1452,
18
(
1
), pp.
25
30
.
31.
Hetsch
,
T.
, and
Rist
,
U.
, 2006, “
The Effect of Sweep on Laminar Separation Bubbles
,”
Sixth IUTAM Symposium on Laminar-Turbulent Transition
, pp.
395
400
.
32.
Saric
,
W. S.
,
Reed
,
H. L.
, and
White
,
E. B.
, 2003, “
Stability and Transition of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
413
440
.
33.
Deyhle
,
H.
, and
Bippes
,
H.
, 1996, “
Disturbance Growth in an Unstable Three-Dimensional Boundary Layer and Its Dependence on Initial Conditions
,”
J. Fluid Mech.
0022-1120,
316
, pp.
73
113
.
34.
Nitschke-Kowsky
,
P.
, and
Bippes
,
H.
, 1988, “
Instability and Transition of a Three-Dimensional Boundary Layer on a Swept Flat Plate
,”
Phys. Fluids
1070-6631,
31
, pp.
786
795
.
35.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2008, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021006
.
36.
Ustinov
,
M. V.
, 2003, “
Receptivity of the Flat-Plate Boundary Layer to Free-Stream Turbulence
,”
Fluid Dyn.
0015-4628,
38
, pp.
397
408
.
37.
Chong
,
T. P.
and
Zhong
,
S.
, 2003, “
On the Three-Dimensional Structure of Turbulent Spots
,” ASME No. GT-2003-38435.
You do not currently have access to this content.