The complex flow field in the tip region of a turbomachine rotor, including the tip leakage flow and tip leakage vortex (TLV), has been studied for decades. Yet many associated phenomena are still not understood. This paper provides detailed data on the instantaneous and phase-averaged inner structures of the tip flow and evolution of the TLV. Observations are based on series of high resolution planar particle image velocimetry measurements performed in a transparent waterjet pump fitted into an optical refractive index-matched test facility. Velocity distributions and turbulence statistics are obtained in several meridional planes inside the rotor. We observe that the instantaneous TLV structure is composed of unsteady vortex filaments that propagate into the tip region of the blade passage. These filaments are first embedded into a vortex sheet, which is generated at the suction side of the blade tip, and then they wrap around each other and roll up into the TLV. We also find that the leakage vortex induces flow separation at the casing endwall and entrains the casing boundary layer with its counter-rotating vorticity. As it propagates in the rotor passage, the TLV migrates toward the pressure side of the neighboring blade. Unsteadiness associated with vortical structures is also investigated. We notice that, at early stages of the TLV evolution, turbulence is elevated in the vortex sheet, in the flow entrained from the endwall, and near the vortex core. Interestingly, the turbulence observed around the core is not consistent with the local distribution of turbulent kinetic energy production rate. This mismatch indicates that, given a TLV section, production likely occurs at preceding stages of the vortex evolution. Then, the turbulence is convected to the core of the TLV, and we suggest that this transport has substantial component along the vortex. We observe that the meandering of vortex filaments dominates the flow in the passage and we decompose the unsteadiness surrounding the TLV core to contributions from interlaced vortices and broadband turbulence. The two contributions are of the same order of magnitude. During late stages of its evolution, TLV breakdown occurs, causing rapid broadening of the phase-averaged core, with little change in overall circulation. Associated turbulence occupies almost half the width of the tip region of blade passage and turbulence production there is also broadly distributed. Proximity of the TLV to the pressure side of the neighboring blade also affects entrainment of flow into the incoming tip region.

1.
Tan
,
S.
, 2006, “
Three-Dimensional and Tip Clearance Flows in Compressors
,”
Advances in Axial Compressor Aerodynamics
(VKI Lecture Series 2006-06), Rhode-Saint-Genèse, Belgium, May 15–18.
2.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
(
4
), pp.
621
656
.
3.
Li
,
Y. S.
, and
Cumpsty
,
N. A.
, 1991, “
Mixing in Axial Flow Compressors: Part I—Test Facilities and Measurements in a Four-Stage Compressor
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
161
165
.
4.
Li
,
Y. S.
, and
Cumpsty
,
N. A.
, 1991, “
Mixing in Axial Flow Compressors: Part II—Measurements in a Single-Stage Compressor and a Duct
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
166
174
.
5.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
, 2001, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
0889-504X,
123
(
3
), pp.
453
463
.
6.
Farrell
,
K. J.
, and
Billet
,
M. L.
, 1994, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
0098-2202,
116
(
3
), pp.
551
557
.
7.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
, 2010, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
0066-4189,
42
, pp.
275
300
.
8.
Uzol
,
O.
, and
Katz
,
J.
, 2007, “
Flow Measurement Techniques in Turbomachinery
,”
Handbook of Experimental Fluid Mechanics
,
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
, eds.,
Springer
,
Berlin
, pp.
919
957
.
9.
Xiao
,
X.
,
McCarter
,
A. A.
, and
Lakshminarayana
,
B.
, 2001, “
Tip Clearance Effects in a Turbine Rotor: Part I Pressure Field and Loss
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
296
304
.
10.
McCarter
,
A. A.
,
Xiao
,
X.
, and
Lakshminarayana
,
B.
, 2001, “
Tip Clearance Effects in a Turbine Rotor: Part II Velocity Field and Flow Physics
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
305
313
.
11.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
, 2008, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End Wall
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), p.
011001
.
12.
Muthanna
,
C.
, and
Devenport
,
W. J.
, 2004, “
Wake of a Compressor Cascade With Tip Gap, Part I: Mean Flow and Turbulence Structure
,”
AIAA J.
0001-1452,
42
(
11
), pp.
2320
2331
.
13.
Wang
,
Y.
, and
Devenport
,
W. J.
, 2004, “
Wake of a Compressor Cascade With Tip Gap, Part 2: Effects of Endwall Motion
,”
AIAA J.
0001-1452,
42
(
11
), pp.
2332
2340
.
14.
Rains
,
D. A.
, 1954, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,” Ph.D. thesis, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA.
15.
Lakshminarayana
,
B.
, 1970, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
0021-9223,
92
, pp.
467
482
.
16.
Chen
,
G. T.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Marble
,
F. E.
, 1991, “
Similarity Analysis of Compressor Tip Clearance Flow Structure
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
260
269
.
17.
Fan
,
S.
,
Lakshminarayana
,
B.
, and
Barnett
,
M.
, 1993, “
Low Reynolds Number k-ε Model for Unsteady Turbulent Boundary-Layer Flows
,”
AIAA J.
0001-1452,
31
(
10
), pp.
1777
1784
.
18.
Gerolymos
,
G. A.
, and
Vallet
,
I.
, 1999, “
Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
121
(
4
), pp.
751
762
.
19.
Gourdain
,
N.
, and
Leboeuf
,
F.
, 2009, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021013
.
20.
Schnell
,
R.
,
Voges
,
M.
,
Mönig
,
R.
,
Müller
,
M. W.
, and
Zscherp
,
C.
, 2008, “
Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part 2: Numerical Results
,”
ASME J. Turbomach.
0889-504X,
133
(
1
), p.
011008
.
21.
Jang
,
C. M.
,
Furukawa
,
M.
, and
Inoue
,
M.
, 2001, “
Analysis of Vortical Flow Field in a Propeller Fan by LDV Measurements and LES—Part I: Three-Dimensional Vortical Flow Structures
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
748
754
.
22.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
, 2006, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
1070-6631,
18
(
10
), p.
105102
.
23.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
, 2007, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
0022-1120,
586
, pp.
177
204
.
24.
Voges
,
M.
,
Schnell
,
R.
,
Willert
,
C.
,
Mönig
,
R.
,
Müller
,
M. W.
, and
Zscherp
,
C.
, 2008, “
Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part 1: Particle Image Velocimetry
,”
J. Turbomach.
0889-504X,
131
(
1
), p.
011007
.
25.
Liu
,
B.
,
Wang
,
H.
,
Liu
,
H.
,
Yu
,
H.
,
Jiang
,
H.
, and
Chen
,
M.
, 2004, “
Experimental Investigation of Unsteady Flow Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition With Stereoscopic Particle Image Velocimetry
,”
J. Turbomach.
0889-504X,
126
(
3
), pp.
360
374
.
26.
Yu
,
X.
, and
Liu
,
B.
, 2007, “
Stereoscopic PIV Measurement of Unsteady Flows in an Axial Compressor Stage
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
1049
1060
.
27.
Uzol
,
O.
,
Chow
,
Y. C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2002, “
Unobstructed PIV Measurements Within an Axial Turbo-Pump Using Liquid and Blades With Matched Refractive Indices
,”
Exp. Fluids
0723-4864,
33
, pp.
909
919
.
28.
Soranna
,
F.
,
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2006, “
The Effect of Inlet Guide Vanes-Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
132
(
4
), p.
041016
.
29.
Uzol
,
O.
,
Brzozowski
,
D.
,
Chow
,
Y. -C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2007, “
A Database of PIV Measurements Within a Turbomachinery Stage and Sample Comparisons With Unsteady RANS
,”
J. Turbul.
1468-5248,
8
, pp.
1
20
.
30.
Arndt
,
R. E. A.
, 2002, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
143
175
.
31.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
32.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1990, “
Optimization of Particle Image Velocimeters. I. Double Pulsed Systems
,”
Meas. Sci. Technol.
0957-0233,
1
, pp.
1202
1215
.
33.
Roth
,
G.
, and
Katz
,
J.
, 2001, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
238
245
.
34.
Doligalski
,
T. L.
,
Smith
,
C. R.
, and
Walker
,
J. D. A.
, 1994, “
Vortex Interaction With Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
573
616
.
35.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
36.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
, 2005, “
On the Relationship Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
0022-1120,
535
, pp.
189
214
.
37.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
, 1999, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
469
480
.
You do not currently have access to this content.