The accuracy of computational fluid dynamics (CFD) for the prediction of flow and heat transfer in a direct transfer preswirl system is assessed through a comparison of CFD results with experimental measurements. Axisymmetric and three-dimensional (3D) sector CFD models are considered. In the 3D sector models, the preswirl nozzles or receiver holes are represented as axisymmetric slots so that steady state solutions can be assumed. A number of commonly used turbulence models are tested in three different CFD codes, which were able to capture all of the significant features of the experiments. A reasonable quantitative agreement with experimental data for static pressure, total pressure, and disk heat transfer is found for the different models, but all models gave results that differ from the experimental data in some respect. The more detailed 3D geometry did not significantly improve the comparison with experiment, which suggests deficiencies in the turbulence modeling, particularly in the complex mixing region near the preswirl nozzle jets. The predicted heat transfer near the receiver holes was also shown to be sensitive to near-wall turbulence modeling. Overall, the results are encouraging for the careful use of CFD in preswirl-system design.

1.
Meierhofer
,
B.
, and
Franklin
,
C. J.
, 1981, “
An Investigation of Preswirled Cooling Airflow to a Turbine Disc by Measuring the Air Temperature in the Rotating Channels
,” ASME Paper No. 81-GT-132.
2.
Smout
,
P. D.
, 2001, “
ICAS-GT—EU Research Into Gas Turbine Internal Air System Performance
,”
Air Space Eur.
,
3
(
3–4
), pp.
166
169
.
3.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
, 2002, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
119
124
.
4.
Geis
,
T.
,
Rottenkolber
,
G.
,
Dittmann
,
M.
,
Richter
,
B.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2002, “
Endoscopic PIV-Measurements in an Enclosed Rotor-Stator System With Pre-Swirled Cooling Air
,”
11th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal.
5.
Bricaud
,
C.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
, 2005, “
Heat Transfer Measurements at the Rotor Disc of a Direct Transfer Preswirl System
,”
17th International Symposium on Airbreathing Engines
, Paper No. ISABE-1073.
6.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
, 2003, “
Cooling Air Temperature Reduction in a Direct Transfer Pre-Swirl System
,” ASME Paper No. GT-2003-38231.
7.
Bricaud
,
C.
,
Dullenkopf
,
K.
,
Bauer
,
H. J.
, and
Geis
,
T.
, 2007, “
Measurement and Analysis of Aerodynamic and Thermodynamic Losses in Preswirl System Arrangements
,” ASME Paper No. GT-2007-27191.
8.
Benim
,
A.
,
Bonhoff
,
B.
,
Bricaud
,
C.
,
Brillert
,
D.
, and
Cagan
,
M.
, 2005, “
Computational Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,”
Sixth European Conference on Turbomachinery
, Lille, France.
9.
Benim
,
A.
,
Brillert
,
D.
, and
Cagan
,
M.
, 2004, “
Investigation Into the Computational Analysis of Direct Transfer Preswirl Systems for Gas Turbine Cooling
,” ASME Paper No. GT-2004-54151.
10.
Chew
,
J. W.
,
Ciampoli
,
F.
,
Hills
,
N. J.
, and
Scanlon
,
T.
, 2005, “
Pre-Swirled Cooling Air Delivery System Performance
,” ASME Paper No. GT2005-68323.
11.
Ciampoli
,
F.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
, 2008, “
Unsteady Numerical Simulation of the Flow in a Direct Transfer Preswirl System
,” ASME Paper No. GT-2008-51198.
12.
El-Oun
,
Z. B.
, and
Owen
,
J. M.
, 1989, “
Preswirl Blade-Cooling Effectiveness in an Adiabatic Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
522
529
.
13.
Chew
,
J. W.
,
Hills
,
N. J.
,
Khalatov
,
S.
,
Scanlon
,
T.
, and
Turner
,
A. B.
, 2003, “
Measurements and Analysis of Flow in a Preswirled Cooling Air Delivery System
,” ASME Paper No. GT-2003-38084.
14.
Wilson
,
M.
,
Pilbrow
,
R.
, and
Owen
,
J. M.
, 1997, “
Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
364
373
.
15.
Karabay
,
H.
,
Chen
,
J. -X.
,
Pilbrow
,
R.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 1999, “
Flow in a ‘Cover-Plate’ Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
160
166
.
16.
Yan
,
Y.
,
Farzaneh-Gord
,
M.
,
Lock
,
G.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Fluid Dynamics of a Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
641
647
.
17.
Farzaneh-Gord
,
M.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Numerical and Theoretical Study of Flow and Heat Transfer in a Preswirl Rotor-Stator System
,” ASME Paper No. GT2005-68135.
18.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2007, “
Physical Interpretation of Flow and Heat Transfer in Preswirl Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
769
777
.
19.
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Influence of Fluid Dynamics on Heat Transfer in a Pre-Swirl Rotating Disc System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
791
797
.
20.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
, 2009, “
Effects of Radial Location of Nozzles on Heat Transfer in Preswirl Cooling Systems
,” ASME Paper No. GT2009-59090.
21.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2009, “
Effect of Radial Location of Nozzles on Performance of Pre-Swirl Systems
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
223
(
2
), pp.
179
190
.
22.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
, 2009, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystals. Part 2: Application to Rotating Disc
,”
Int. J. Heat Fluid Flow
0142-727X,
30
, pp.
950
959
.
23.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G.
, and
Owen
,
J. M.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: An improved Technique
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
14
22
.
24.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
, 2009, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystals. Part 1: Calibration and Characteristics of Crystals
,”
Int. J. Heat Fluid Flow
0142-727X,
30
, pp.
939
949
.
25.
Owen
,
J. M.
,
Newton
,
P. J.
, and
Lock
,
G. D.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Experimental Uncertainties
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
23
28
.
26.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2005, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
256
263
.
27.
Lapworth
,
L.
, 2004, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
.
You do not currently have access to this content.