Diminishing natural gas resources has increased incentive to develop cleaner, more efficient combined-cycle power plants capable of burning alternative fuels such as coal-derived synthesis gas (syngas). Although syngas is typically filtered, particulate matter still exists in the hot gas path that has proven to be detrimental to the life of turbine components. Solid and molten particles deposit on film-cooled surfaces that can alter cooling dynamics and block cooling holes. To gain an understanding of the effects that particle deposits have on film cooling, a methodology was developed to simulate deposition in a low speed wind tunnel using a low melt wax, which can simulate solid and molten phases. A facility was constructed to simulate particle deposition on a flat plate with a row of film cooling holes. Infrared thermography was used to measure wall temperatures for quantifying spatially resolved adiabatic effectiveness values in the vicinity of the film cooling holes as deposition occurred. Results showed that deposition reduced cooling effectiveness by approximately 20% at momentum flux ratios of 0.23 and 0.5 and only 6% at a momentum flux ratio of 0.95.

1.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
P.
, 2007, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,” Paper No. GT2007-28096.
2.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
, 2007, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
135
143
.
3.
Hamed
,
A.
, and
Tabakoff
,
W.
, 2006, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
350
360
.
4.
Dring
,
R. P.
,
Caspar
,
J. R.
, and
Suo
,
M.
, 1979, “
Particle Trajectories in Turbine Cascades
,”
J. Energy
0146-1412,
3
(
3
), pp.
161
166
.
5.
Friedlander
,
S. K.
, and
Johnstone
,
H. F.
, 1957, “
Deposition of Suspended Particles From Turbulent Gas Streams
,”
Ind. Eng. Chem.
0019-7866,
49
, pp.
1151
1156
.
6.
Wenglarz
,
R. A.
, and
Fox
,
R. G.
, 1990, “
Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
9
14
.
7.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beer
,
J. M.
, and
Sarofim
,
A. F.
, 1990, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
0360-1285,
16
, pp.
327
345
.
8.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
, 1992, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
132
138
.
9.
Wenglarz
,
R. A.
, and
Wright
,
I. G.
, 2003, “
Alternate Fuels for Land-Based Turbines
,”
Proceedings of the Workshop on Materials and Practices to Improve Resistance to Fuel Derived Environmental Damage in Land-and Sea-Based Turbines
, Colorado School of Mines, Golden, Co., Oct. 22–24, pp.
4
-45–4-
64
.
10.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
, 1985, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
111
116
.
11.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
739
748
.
12.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Mid-Passage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,” Paper No. GT2005-68900.
13.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2006, “
Effects of Surface Deposition, Hole Blockage, and TBC Spallation on Vane Endwall Film-Cooling
,” Paper No. GT2006-90379.
14.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
, 2005, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
462
470
.
15.
Bons
,
J. P.
,
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
, and
Fletcher
,
T. H.
, 2006, “
Evolution of Surface Deposits on a High Pressure Turbine Blade, Part II: Convective Heat Transfer
,” Paper No. GT2006-91257.
16.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
, 2007, “
Effects of Particle Size, Gas Temperature, and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,” Paper No. GT2007-27531.
17.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
, 2008, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,” Paper No. GT2008-50901.
18.
Moffat
,
R. J.
, 1985, “
Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
173
181
.
19.
Kunze
,
M.
,
Preibisch
,
S.
,
Vogeler
,
K.
,
Landis
,
K.
, and
Heselhaus
,
A.
, 2008, “
A New Test Rig for Film Cooling Experiments on Turbine Endwalls
,” Paper No. GT2008-51096.
20.
Lutum
,
E.
, and
Johnson
,
B. V.
, 1999, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
209
216
.
21.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
22.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1991, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
442
449
.
23.
Albert
,
J.
, 2008, personal communication.
24.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
25.
Thole
,
K. A.
,
Sinha
,
A. K.
, and
Bogard
,
D. G.
, 1990, “
Mean Temperature Measurements of Jets with a Crossflow for Gas Turbine Film Cooling Application
,”
Rotating Transport Phenomena
,
J. H.
Kim
and
W. J.
Yang
, eds.,
Hemisphere
,
New York
.
You do not currently have access to this content.