Film cooling performances of two kinds of converging-slot-hole (console) with different exit-entry area ratios have been measured using a new transient liquid crystal measurement technique, which can process the nonuniform initial wall temperature. Four momentum ratios are tested. The film cooling effectiveness distribution features are similar for the two consoles under all the momentum ratios. Consoles with smaller exit-entry area ratio produce higher cooling effectiveness. And the laterally averaged cooling effectiveness results show that the best momentum ratio for both consoles’ film cooling effectiveness distribution is around 2. For both consoles, the heat transfer in the midspan region is stronger than that in the hole centerline region in the upstream but gradually becomes weaker as flowing downstream. With the momentum ratio increasing, the normalized heat transfer coefficient hh0 of both consoles increases. In the upstream, the heat transfer coefficient of console with small exit-entry area ratio is higher. But in the downstream, the jets’ turbulence and the couple vortices play notable elevating effect on the heat transfer coefficient for large exit-entry area ratio case, especially under small momentum ratios. Consoles with smaller exit-entry area ratio provide better thermal protection because of higher cooling effectiveness. And the distributions of heat flux ratio are similar with those of cooling effectiveness because the influence of η on qq0 is larger. For the consoles, smaller exit-entry area ratios produce lower discharge coefficients when the pressure variation caused by the hole shape is regarded as flow resistance.

1.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
3.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
4.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
549
556
.
5.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 2002, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
820
827
.
6.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
327
336
.
7.
Makki
,
Y. H.
, and
Jakubowski
,
G.
, 1986, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,” AIAA Paper No. 86-1326.
8.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
9.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Heat Transfer Coefficients Measurements of Film Cooling Holes With Expanded Exits
,” ASME Paper No. 98-GT-28.
10.
Hay
,
N.
, and
Lampard
,
D.
, 1995, “
The Discharge Coefficient of Flared Film Cooling Holes
,” ASME Paper No. 95-GT-15.
11.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Discharge Coefficient Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
557
563
.
12.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Witting
,
S.
, and
Sharp
,
E.
, 2000, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
146
153
.
13.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2000, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
0723-4864,
29
, pp.
117
129
.
14.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2002, “
A Converging Slot Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
453
460
.
15.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2002, “
A Converging Slot Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
461
471
.
16.
Sargison
,
J. E.
,
Oldfield
,
M. L. G.
,
Guo
,
S. M.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2005, “
Flow Visualization of the External Flow From a Converging Slot-Hole Film-Cooling Geometry
,”
Exp. Fluids
0723-4864,
38
, pp.
304
318
.
17.
Azzi
,
A.
, and
Jubran
,
B. A.
, 2007, “
Numerical Modelling of Film Cooling From Converging Slot-Hole
,”
Heat Mass Transfer
0947-7411,
43
, pp.
381
388
.
18.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2008, “
Study on the Physics of Film-Cooling Effectiveness Enhancement by the Converging-Expanding Hole
,”
Journal of Aerospace Power
,
23
(
4
), pp.
598
604
.
19.
Kohli
,
A.
, and
Bogard
,
D.
, 1999, “
Effects of Hole Shape on Film Cooling With Large Angle Injection
,” ASME Paper No. 99-GT-165.
20.
Gritsch
,
M.
,
Colban
,
W.
, and
Schar
,
H.
, 2005, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
718
725
.
21.
Vedula
,
R. J.
, and
Metzger
,
D. E.
, 1991, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three Temperature Convection Situations
,” ASME Paper No. 91-GT-345.
22.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
, and
Ireland
,
P. T.
, 2003, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three Temperature Problem
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
538
546
.
23.
Drost
,
U.
,
Bolcs
,
A.
, and
Hoffs
,
A.
, 1997, “
Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plane and a Turbine Airfoil
,” ASME Paper No. 97-GT-026.
24.
Vedula
,
R. P.
,
Metzger
,
D. E.
, and
Bickford
,
W. B.
, 1988, “
Effects of Lateral and Anisotropic Conduction on Determination of Local Convection Heat Transfer Characteristics With Transient Tests and Surface Coatings
,”
Winter Annual Meeting of ASME
, HTD-I, pp.
21
27
.
25.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2009, “
A Method for Processing Transient Heat Transfer Measurements in the Presence of Nonuniform Initial Wall Temperature
,” ASME Paper No. GT2009-59001.
26.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2009, “
Study on Influence of Intial Wall Temperature Distribution on the Transient Measurement Results of Film Cooling
,”
Proceedings of Turbine-09: The ICHMT International Symposium on Heat Transfer in Gas Turbine Systems
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechanical Engineering
,
75
, pp.
3
8
.
28.
Goldstein
,
R. J.
,
Jin
,
P.
, and
Olson
,
R. L.
, 1999, “
Film Cooling Effectiveness and Mass/Heat Transfer Coefficient Downstream of One Row of Discrete Holes
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
225
232
.
29.
Lu
,
Y. P.
,
Faucheaux
,
D.
, and
Ekkad
,
S. V.
, 2005, “
Film Cooling Measurements for Novel Hole Configurations
,” ASME Paper No. HT2005-72396.
You do not currently have access to this content.