A novel air-brake concept for next-generation, low-noise civil aircraft is introduced. Deployment of such devices in clean airframe configuration can potentially reduce aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is demonstrated to have high drag and low noise. The simplest configuration is a ram pressure-driven duct with stationary swirl vanes, a so-called swirl tube. A detailed aerodynamic design is performed using first principles based modeling and high-fidelity numerical simulations. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 50 deg. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well-populated area. Vortex breakdown is found to be the aerodynamically and acoustically limiting phenomenon, generating a white-noise signature that is about 15 dB louder than a stable swirling flow.

1.
Lilley
,
G. M.
, 2001, “
The Prediction of Airframe Noise and Comparison With Experiment
,”
J. Sound Vib.
0022-460X,
239
, pp.
849
859
.
2.
Smith
,
M. J. T.
, 1989,
Aircraft Noise
,
Cambridge University Press
,
Cambridge
.
3.
Howe
,
M. S.
, 1978, “
A Review of the Theory of Trailing Edge Noise
,”
J. Sound Vib.
0022-460X,
61
, pp.
437
465
.
4.
Lockard
,
D. P.
, and
Lilley
,
G. M.
, 2004, “
The Airframe Noise Reduction Challenge
,” Reference Publication 213013, NASA, Hampton, VA.
5.
Clarke
,
J. B.
,
Ho
,
N. T.
,
Ren
,
L.
,
Brown
,
J. A.
,
Elmer
,
K. R.
,
Tong
,
K.
, and
Wat
,
J. K.
, 2004, “
Continuous Descent Approach: Design and Flight Test for Louisville International Airport
,”
J. Aircr.
0021-8669,
43
, pp.
1054
1066
.
6.
Reynolds
,
T. G.
,
Ren
,
L.
,
Clarke
,
J. B.
,
Burke
,
A. S.
, and
Green
,
M.
, 2005, “
History, Development and Analysis of Noise Abatement Arrival Procedures for UK Airports
,”
AIAA Fifth Aviation, Technology, Integration and Operations Conference
, Arlington, VA, Sept. 26–28, Paper No. AIAA-2005-7395.
7.
Lutz
,
T.
, and
Wieser
,
T.
, 2006, “
Heading for the City: A318 Steep Approach Development
,” International Federation of Airline Pilots’ Associations, I.F.A.L.P.A. News, Apr.
8.
Diedrich
,
A.
,
Hileman
,
J.
,
Tan
,
D.
,
Wilcox
,
K.
, and
Spakovszky
,
Z.
, 2006, “
Multidisciplinary Design and Optimization of the “Silent” Aircraft
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, Paper No. AIAA-2006-1323.
9.
Hileman
,
J.
,
Spakovszky
,
Z.
,
Drela
,
M.
, and
Sargeant
,
M.
, 2006, “
Aerodynamic and Aeroacoustic Three-Dimensional Design for a “Silent” Aircraft
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, Paper No. AIAA-2006-241.
10.
Manneville
,
A.
,
Pilczer
,
D.
, and
Spakovszky
,
Z. S.
, 2006, “
Preliminary Evaluation of Noise Reduction Approaches for a Functionally Silent Aircraft
,”
J. Aircr.
0021-8669,
43
, pp.
736
740
.
11.
Manneville
,
A.
,
Pilczer
,
D.
, and
Spakovszky
,
Z.
, 2004, “
Noise Reduction Assessments and Preliminary Design Implications for a Functionally-Silent Aircraft
,”
Tenth AIAA/CEAS Aeroacoustics Conference
, Manchester, UK, May 10–12, Paper No. AIAA-2004-2925.
12.
Agarwal
,
A.
, and
Dowling
,
A. P.
, 2005, “
The Calculation of Acoustic Shielding of Engine Noise by the Silent Aircraft Airframe
,”
11th AIAA/CEAS Aeroacoustics Conference
, Monterey, California, USA, May 23–25, Paper No. AIAA-2005-2996.
13.
Hall
,
C. A.
, and
Crichton
,
D.
, 2006, “
Engine Design Studies for a Silent Aircraft
,” ASME Paper No. GT2006-90559.
14.
Shah
,
P. N.
, 2006, “
Novel Turbomachinery Concepts for Highly Integrated Airframe/Propulsion Systems
,” Ph.D. thesis, MIT, Cambridge, MA.
15.
Shah
,
P. N.
,
Mobed
,
D.
, and
Spakovszky
,
Z. S.
, 2007, “
Engine Air-Brakes for Quiet Air Transport
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–11, Paper No. AIAA-2007-1033.
16.
Mager
,
A.
, 1974, “
Steady, Incompressible, Swirling Jets and Wakes
,”
AIAA J.
0001-1452,
12
, pp.
1540
1547
.
17.
Loiseleux
,
T.
,
Delbende
,
I.
, and
Huerre
,
P.
, 2000, “
Absolute and Convective Instabilities of a Swirling Jet/Wake Shear Layer
,”
Phys. Fluids
1070-6631,
12
, pp.
375
380
.
18.
Schwartz
,
I.
, 1973, “
Swirling Flow Jet Noise Suppressors for Aircraft Engines
,”
AIAA Aeroacoustics Conference
, Seattle, WA, Oct. 15–17, Paper No. AIAA-1973-1003.
19.
Lu
,
H.
,
Ramsay
,
J.
, and
Miller
,
D.
, 1977, “
Noise From Swirling Exhaust Jets
,”
AIAA J.
0001-1452,
15
, pp.
642
646
.
20.
Delery
,
J. M.
, 1994, “
Aspects of Vortex Breakdown
,”
Prog. Aerosp. Sci.
0376-0421,
30
, pp.
1
59
.
21.
Hall
,
M. G.
, 1972, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
0066-4189,
4
, pp.
195
218
.
22.
Leibovich
,
S.
, 1978, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
0066-4189,
10
, pp.
221
246
.
23.
Shah
,
P. N.
,
Mobed
,
D.
, and
Spakovszky
,
Z. S.
, 2007, “
Aero-Acoustics of Drag Generating Swirling Exhaust Flows
,” presented at
The 28th AIAA/CEAS Aeroacoustics Conference
, Rome, Italy, May 21–23.
24.
Squire
,
H. B.
, 1960, “
Analysis of the ‘Vortex Breakdown’ Phenomenon
,” Imperial College, Aeronautics Department, Report No. 102.
25.
Brooke Benjamin-Zword
,
T.
, 1962, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
0022-1120,
14
, pp.
593
629
.
26.
Darmofal
,
D. L.
,
Khan
,
R.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
, 2003, “
Vortex Core Behavior in Confined and Unconfined Geometries: A Quasi-One-Dimensional Model
,”
J. Fluid Mech.
0022-1120,
449
, pp.
61
84
.
27.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
, 2004,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
Cambridge
.
28.
Bearman
,
P. W.
, 1967, “
The Effect of Base Bleed on the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge
,”
Aeronaut. Q.
0001-9259,
18
, pp.
207
224
.
29.
Sevilla
,
A.
, and
Martínez-Bazán
,
C.
, 2004, “
Vortex Shedding in High Reynolds Number Axisymmetric Bluff-Body Wakes: Local Linear Instability and Global Bleed Control
,”
Phys. Fluids
1070-6631,
16
, pp.
3460
3469
.
30.
Drela
,
M.
, 1997, “
A User’s Guide to MTFLOW 1.2—Multi-Passage Throughflow Design/Analysis Program
,” Nov.
31.
Mobed
,
D.
, 2007, “
Experimental Aero-Acoustic Assessment of Swirling Flows for Drag Applications
,” MS thesis, MIT, Cambridge, MA.
32.
Schlichting
,
A. H.
, 1987,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
33.
Brooks
,
T. F.
, 1989, “
Airfoil Self-Noise and Prediction
,” Reference Publication 1218, NASA, Hampton, VA.
34.
Mendoza
,
J. M.
,
Brooks
,
T. F.
, and
Humphreys
,
W. M.
, Jr.
, 2002, “
Aeroacoustic Measurements of a Wing-Slat Model
,”
Eighth AIAA/CEAS Aeroacoustics Conference
, Breckenridge, CO, Jun. 17–19, Paper No. AIAA-2002-2604.
35.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
, Jr.
, 2003, “
Flap-Edge Aeroacoustic Measurements and Prediction
,”
J. Sound Vib.
0022-460X,
261
, pp.
31
74
.
36.
Hutcheson
,
F. V.
, and
Brooks
,
T. F.
, 2002, “
Noise Radiation From Single and Multiple Rod Configurations
,”
12th AIAA/CEAS Aeroacoustics Conference
, Cambridge, MA, May 8–10, Paper No. AIAA-2006-2629.
37.
Hubbard
,
H. H.
, and
Manning
,
J. C.
, 1983, “
Aeroacoustic Research Facilities at NASA Langley Research Center: Description and Operational Characteristics
,” Technical Memorandum No. TM-84585, NASA, Hampton, VA.
38.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
, Jr.
, 2006, “
A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays
,”
J. Sound Vib.
0022-460X,
294
, pp.
856
879
.
You do not currently have access to this content.