This paper is focused on the effect of film-hole configurations on platform film cooling. The platform is cooled by purge flow from a simulated stator-rotor seal combined with discrete-hole film cooling within the blade passage. The cylindrical holes and laidback fan-shaped holes are assessed in terms of film-cooling effectiveness and total pressure loss. Lined up with the freestream streamwise direction, the film holes are arranged on the platform with two different layouts. In one layout, the film-cooling holes are divided into two rows and more concentrated on the pressure side of the passage. In the other layout, the film-cooling holes are divided into four rows and loosely distributed on the platform. Four film-cooling hole configurations are investigated totally. Testing was done in a five-blade cascade with medium high Mach number condition (0.27 and 0.44 at the inlet and the exit, respectively). The detailed film-cooling effectiveness distributions on the platform were obtained using pressure sensitive paint technique. Results show that the combined cooling scheme (slot purge flow cooling combined with discrete-hole film cooling) is able to provide full film coverage on the platform. The shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The hole layout affects the local film-cooling effectiveness. The shaped holes also show the advantage over the cylindrical holes with lower total pressure loss.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
. 0077-8923
3.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
27
36
. 0077-8923
4.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
301
312
.
5.
Langston
,
L. S.
,
Nice
,
L. M.
, and
Hooper
,
R. M.
, 1976, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
6.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
. 0022-1481
8.
Wang
,
H. P.
,
Olson
,
S. J.
, and
Goldstein
,
R. J.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
9.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
10.
Harasgama
,
S. P.
, and
Burton
,
C. S.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part I—Experimental Technique and Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
734
740
.
11.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1996, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
278
284
.
12.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
13.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1998, “
The Design of an Improved Endwall Film Cooling Configuration
,” ASME Paper No. 98-GT-483.
15.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Derdichizzi
,
A.
, 2005, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,” ASME Paper No. GT2005–68544.
16.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2007, “
Endwall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
212
220
.
17.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
, 2006, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Level
,” ASME Paper No. GT2006–90021.
18.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwall
,”
ASME J. Heat Transfer
,
96
, pp.
524
529
. 0022-1481
19.
Granser
,
D.
, and
Schulenberg
,
T.
, 1990, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,” ASME Paper No. 90-GT-95.
20.
Roy
,
R. P.
,
Squires
,
K. D.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W. J.
, and
Ansari
,
A.
, 2000, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages–Experiments and Simulations
,” ASME Paper No. 2000-GT-198.
21.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. J.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-200.
22.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
, 2001, “
Measurements Over a Film-Cooled Contoured Endwall With Various Coolant Injection Rates
,” ASME Paper No. 2001- GT-0140.
23.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “Film Cooling Experiments With Flow Introduced
Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,” ASME Paper No. GT-2002–30169.
24.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
735
.
25.
Zhang
,
L. J.
, and
Moon
,
H. K.
, 2003, “
Turbine Nozzle Endwall Inlet Film Cooling–The Effect of a Backward Facing Step
,” ASME Paper No. GT2003–38319.
26.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,” ASME Paper No. GT2006–90375.
27.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
, 2006, “
Effectiveness Distributions on Turbine Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,” AIAA Paper No. AIAA-2006–3402.
28.
Wright
,
L. M.
,
Blake
,
S.
,
Rhee
,
D. H.
, and
Han
,
J. C.
, 2007, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,” ASME Paper No. GT2007–27092.
29.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
, 2007, “
Upstream Vortex Effect on Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow
," ASME Paper No. IMECE2007–41717.
30.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2007, “
Film Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,” ASME Paper No. GT2007–27122.
31.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
729
.
32.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Holes Flows
,” ASME Paper No. IMECE2006–15092.
33.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness on a Rotating Blade Platform
,” ASME Paper No. GT2006–90034.
34.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
You do not currently have access to this content.