The influence of incidence angle on film-cooling effectiveness is studied for a cutback squealer blade tip. Three incidence angles are investigated 0deg at design condition and ±5deg at off-design conditions. Based on mass transfer analogy, the film-cooling effectiveness is measured with pressure sensitive paint techniques. The film-cooling effectiveness distribution on the pressure side near tip region, squealer cavity floor, and squealer rim tip is presented for the three incidence angles at varying blowing ratios. The average blowing ratio is controlled to be 0.5, 1.0, 1.5, and 2.0. One row of shaped holes is provided along the pressure side just below the tip; two rows of cylindrical film-cooling holes are arranged on the blade tip in such a way that one row is offset to the suction side profile and the other row is along the camber line. The pressure side squealer rim wall is cut near the trailing edge to allow the accumulated coolant in the cavity to escape and cool the tip trailing edge. The internal coolant-supply passages of the squealer tipped blade are modeled similar to those in the GE-E3 rotor blade. Test is done in a five-blade linear cascade in a blow-down facility with a tip gap clearance of 1.5% of the blade span. The Mach number and turbulence intensity level at the cascade inlet were 0.23 and 9.7%, respectively. It is observed that the incidence angle affects the coolant jet direction on the pressure side near tip region and the blade tip. The film-cooling effectiveness distribution is also altered. The peak of laterally averaged effectiveness is shifted upstream or downstream depending on the off-design incidence angle. The film cooling effectiveness inside the tip cavity can increase by 25% with the positive incidence angle. However, in general, the overall area-averaged film-cooling effectiveness is not significantly changed by the incidence angles in the range of study.

1.
Bunker
,
R.
, 2006, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
271
285
.
2.
Kim
,
Y. W.
, and
Metzger
,
D. E.
, 1995, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Model
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
12
21
.
3.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
, 1995, “
A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
1
11
.
4.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2002, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” ASME Paper No. GT-2002-30194.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2002, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. GT-2002-30555.
6.
Ahn
,
J.
,
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” ASME Paper No. GT-2004-53249.
7.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2004, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes, Part I: Adiabatic Effectiveness Measurements
,” ASME Paper No. GT-2004-53249.
8.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2004, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes, Part II: Heat Transfer Measurements
,” ASME Paper No. GT-2004-53254.
9.
Mhetras
,
S. H.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J.
, 2006, “
Film-Cooling Effectiveness on Squealer Cavity and Rim Walls of Gas-Turbine Blade Tip
,”
J. Propul. Power
0748-4658,
22
(
4
), pp.
889
899
.
10.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.
, 2006, “
Effect of a Cutback Squealer and Cavity Depth on Film Cooling Effectiveness for a Gas Turbine Blade Tip
,” AIAA Paper No. 2006-3404.
11.
Bunker
,
R. S.
,
Baily
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part I: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
263
271
.
12.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
717
724
.
13.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
725
732
.
14.
Bunker
,
R. S.
, and
Baily
,
J. C.
, 2001, “
Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer
,” ASME Paper No. 2001-GT-0155.
15.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
452
459
.
16.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J. C.
,
Pang Lee
,
C.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
, 2002, “
Heat Transfer Coefficients on Squealer Tip and Near Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,” ASME Paper No. GT-2003-38907.
17.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient on a Gas Turbine Blade Tip and Near Tip Regions
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
297
303
.
18.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
669
677
.
19.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
L. D.
, 1999, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
683
693
.
20.
Ameri
,
A. A.
, and
Rigby
,
D. L.
, 1999, “
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
NASA
Technical Report No. CR-1999-209165.
21.
Ameri
,
A. A.
, and
Bunker
,
R. S.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part II: Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
272
277
.
22.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
, 2004, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. 2004-GT-53199.
23.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
, 1991, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
502
507
.
24.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
692
697
.
25.
Rhee
,
D.
, and
Cho
,
H.
, 2006, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in Low-Speed Annular Cascade, Part I: Near Tip Surface
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
96
109
.
26.
Rhee
,
D.
, and
Cho
,
H.
, 2006, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in Low-Speed Annular Cascade, Part II: Tip and Shroud
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
110
119
.
27.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
, 1982, “
Energy Efficient Engine
,”
General Electric Company, NASA
, Report No. CR-167955.
28.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT-2005-72363.
29.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
30.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1997, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,” ASME Paper No. 97-GT-165.
You do not currently have access to this content.