Computational fluid dynamics has become a mature art form and its use in turbomachinery design has become commonplace. Simple blade-blade simulations run at near interactive rates but anything involving complex geometry—such as turbine cooling—turns around too slowly to participate in realistic design cycles; this is mostly due to the difficulty of modifying and meshing the geometry. Simulations for complex geometries are run afterwards as a check—rather than at the critical conceptual design phase. There is a clear opportunity for some sort of rapid prototyping but fully 3D simulation to remedy this. This paper reports work exploring the relationship between solid modeling, mesh generating, and flow solving in the general context of design optimization but with the emphasis on rapid prototyping. In particular, the work is interested in the opportunities derived by tightly integrating these traditionally separate activities together within one piece of software. The near term aim is to ask the question: how might a truly virtual, rapid prototyping design system, with a tactile response such as sculpting in clay, be constructed? This paper reports the building blocks supporting that ambition.

1.
Dawes
,
W. N.
,
Dhanasekaran
,
P. C.
,
Demargne
,
A. A. J.
,
Kellar
,
W. P.
, and
Savill
,
A. M.
, 2001, “
Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design
,”
ASME J. Turbomach.
0889-504X,
123
(
3
),
552
557
.
2.
Samareh
,
J. A.
, 1999, “
Status and Future of Geometry Modelling and Grid Generation of Design and Optimisation
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
97
104
.
3.
Samareh
,
J. A.
, 2001 “
Survey of Shape Parameterisation Techniques for High-Fidelity Multi-Disciplinary Shape Optimisation
,”
AIAA J.
0001-1452,
39
(
5
), pp.
877
883
.
4.
Dawes
,
W. N.
,
Kellar
,
W. P.
,
Harvey
,
S. A.
,
Dhanasekaran
,
P. C.
,
Savill
,
A. M.
, and
Cant
,
R. S.
, 2003, “
Managing the Geometry is Limiting the Ability of CFD to Manage the Flow
,” AIAA Paper No. 2003-3732.
5.
Harvey
,
S. A.
,
Dawes
,
W. N.
, and
Gallimore
,
S. J.
, 2003, “
An Automatic Design Optimisation System for Axial Compressors Part I: Software Development
,” ASME Paper No. GT2003–38115.
6.
Harvey
,
S. A.
,
Dawes
,
W. N.
, and
Bolger
,
J. J.
, 2003, “
An Automatic Design Optimisation System for Axial Compressors Part II: Experimental Validation
,” ASME Paper No. GT2003–38650.
7.
Lamousin
,
H. J.
, and
Waggenspack
,
W. N.
, 1994, “
NURBS-Based Free-Form Deformation
,”
IEEE Comput. Graphics Appl.
0272-1716,
14
(
6
), pp.
59
65
.
8.
Kellar
,
W. P.
,
Savill
,
A. M.
, and
Dawes
,
W. N.
, 1999, “
Integrated CAD/CFD Visualisation of a Generic F1 Car Front Wheel Flowfield
,”
Lect. Notes Comput. Sci.
0302-9743
1593
, pp.
90
98
.
9.
Kellar
,
W. P.
, 2003, “
Geometry Modelling in CFD and Design Optimisation
,” Ph.D thesis, Cambridge.
10.
Haimes
,
R.
, and
Follen
,
G. L.
, 1998, “
Computational Analysis Programming Interface
,”
Proceedings of the Sixth International On Numerical Grid Generation in Computational Field Simulations
,
M.
Cross
,
P. R.
Eiseman
,
J.
Hauser
,
B. K.
Soni
, and
J. F.
Thompson
, eds.
11.
Sederberg
,
T. W.
, and
Parry
,
S. R.
, 1986, “
Free-Form Deformation of Solid Geometric Models
,”
Comput. Graphics
0097-8493,
20
(
4
), pp.
151
160
.
12.
Galyean
,
T. A.
, and
Hughes
,
J. F.
, 1991, “
Sculpting: An Interactive Volumetric Modelling Technique
,”
ACM Trans., Computer Graphics
,
25
(
4
), pp.
267
274
.
13.
Jones
,
M. W.
, and
Satherley
,
R.
, 2000, “
Voxelisation: Modelling for Volume Graphics
,” Annual SIGGRAPH Conference,
Los Angeles
.
14.
Bremer
,
P.-T.
,
Porumbescu
,
S. D.
,
Kuester
,
F.
,
Hamann
,
B.
,
Joy
,
K. I.
, and
Ma
,
K.-L.
, 2001, “
Virtual Clay Modelling Using Adaptive Distance Fields
.”
15.
Perng
,
K.-L.
,
Wang
,
W.-T.
,
Flanagan
,
M.
, and
Ouhyoung
,
M.
, 2001, “
A Real-Time 3D Virtual Sculpting Tool Based on Modified Marching Cubes
,”
SIGGRAPH
.
16.
Baerentzen
,
A.
, 1990, “
Volume Sculpting: Intuitive, Interactive 3D Shape Modelling
,”
CAD
0010-4485,
22
(
4
), pp.
202
212
.
17.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
18.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1995, “
A Level Set Approach to a Unified Model for Etching, Deposition and Lithography II: Three Dimensional Simulations
,”
J. Comput. Phys.
0021-9991,
122
, pp.
348
366
.
19.
Viecelli
,
J. A.
, 1971, “
A Computing Method for Incompressible Flows Bounded by Moving Walls
,”
J. Comput. Phys.
0021-9991,
8
, pp.
119
143
.
20.
Young
,
D. P.
,
Melvin
,
R. G.
,
Bieterman
,
M. B.
,
Johnson
,
F. T.
,
Samant
,
S. S.
, and
Bussoletti
,
J. E.
, 1991, “
A Locally Refined Rectangular Grid Finite Element Method: Application to Computational Fluid Dynamics and Computational Physics
,”
J. Comput. Phys.
0021-9991,
92
(
1
), pp.
1
66
.
21.
Aftosmis
,
M. J.
,
Berger
,
M. J.
, and
Melton
,
J. E.
, 1998, “
Robust and Efficient Cartesian Mesh Generation for Component-Based Geometry
,”
AIAA J.
0001-1452,
36
(
6
), p.
952
.
22.
Yerry
,
M. A.
, and
Sheppard
,
M. S.
, 1983, “
Automatic Three-Dimensional Mesh Generation by the Modified Octree Technique
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1965
1990
.
23.
Glassner
,
A. S.
, 1990,
Graphics Gems
Academic
,
New York
.
24.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
You do not currently have access to this content.