One of the important ways of improving turbomachinery compressor performance is to control three-dimensional (3D) separations, which form over the suction surface and end wall corner of the blade passage. Based on the insights gained into the formation of these separations, this paper illustrates how an appropriately applied boundary layer suction of up to 0.7% of inlet mass flow can control and eliminate typical compressor stator hub corner 3D separation over a range of operating incidence. The paper describes, using computational fluid dynamics, the application of suction on the blade suction surface and end wall boundary layers and exemplifies the influence of end wall dividing streamline in initiating 3D separation in the blade passage. The removal of the separated region from the blade suction surface is confirmed by an experimental investigation in a compressor cascade involving surface flow visualization, surface static pressure, and exit loss measurements. The ensuing passage flow field is characterized by increased blade loading (static pressure difference between pressure and suction surface), enhanced average static pressure rise, significant loss removal, and a uniform exit flow. This result also enables the contribution of the 3D separation to the overall loss and passage blockage to be assessed.

1.
Kerrebrock
,
J. L.
,
Reinjen
,
D. P.
,
Ziminsky
,
W. S.
,
Smilg
,
L. M.
, 1997, “
Aspirated Compressors
,” ASME Paper No. 97-GT-525.
2.
Kerrebrock
,
J. L.
,
Drela
,
M.
,
Merchant
,
A. A.
, and
Schuler
,
B. J.
, 1998, “
Family of Designs for Aspirated Compressors
,” ASME Paper No. 98-GT-196.
3.
Merchant
,
A.
, 2002, “
Aerodynamic Design and Performance of Aspirated Airfoils
,”
ASME J. Turbomach.
0889-504X,
25
, pp.
141
148
.
4.
Dang
,
T. Q.
,
Van Rooij
,
M. P. C.
, and
Larosiliere
,
L. M.
, 2003, “
Design of Aspirated Compressor Blades Using Three-Dimensional Inverse Method
,” ASME Paper No. GT-2003-30369.
5.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
, 1990, “
Effects of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
133
144
.
6.
Peacock
,
R. E.
, 1965, “
Flow Control in the Corners of Cascades
,”
Aeronautical Research Council
, ARC Paper No. 27291.
7.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 2005, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
0889-504X
127
, pp.
331
339
.
8.
Gbadebo
,
S. A.
, 2003, “
Three-Dimensional Separations in Compressors
,” Ph.D thesis, University of Cambridge, Cambridge, UK.
9.
Denton
,
J. D.
, 2000, MULTALL,
Multistage Turbomachinery Flow Calculation Program
,
Whittle Laboratory, University of Cambridge
,
Cambridge, UK
.
10.
Denton
,
J. D.
, 1999, MULTIP,
Multistage Turbomachinery Flow Calculation Program
,
Whittle Laboratory, University of Cambridge
,
Cambridge, UK
.
11.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
, 1999, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
499
509
.
12.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
, Longman Scientific and Technical, Reprinted, 2004,
Krieger
, FL, ISBN 1-57524-247–8.
13.
Chang
,
P. K.
, 1970,
Separation of Flow
,
Interdisciplinary and Advanced Topics in Science and Engineering
,
Pergamon
,
New York
, Vol.
3
.
14.
Lighthill
,
M. J.
, 1963, “
Attachment and Separation in Three-Dimensional Flows
,”
Laminar Boundary Layers
,
L.
Rosenhead
, ed.,
Oxford University Press
,
New York
, pp.
72
82
.
15.
Tobak
,
M.
, and
Peake
,
D. J.
, 1982,
Topology of Three-Dimensional Separated Flows
,
Annual Review of Fluid Mechanics
, Vol.
14
, pp.
61
85
.
You do not currently have access to this content.