This paper presents a numerical investigation of the heat transfer inside a micro gas turbine and its impact on the performance. The large temperature difference between turbine and compressor in combination with the small dimensions results in a high heat transfer causing a drop in efficiency of both components. Present study aims to quantify this heat transfer and to reveal the different mechanisms that contribute to it. A conjugate heat transfer solver has been developed for this purpose. It combines a three-dimensional (3D) conduction calculation inside the rotor and the stator with a 3D flow calculation in the radial compressor, turbine and gap between stator and rotor. The results for micro gas turbines of different size and shape and different material characteristics are presented and the impact on performance is evaluated.

1.
Gong
,
Y.
,
Sirakov
,
B. T.
,
Epstein
,
A. H.
, and
Tan
,
C. S.
, 2004, “
Aerothermodynamics of Micro-Turbomachinery
,” ASME Paper No. GT2004-53877.
2.
Isomura
,
K.
,
Murayama
,
M.
, and
Kawakubo
, 2001, “
Feasibility Study of a Gas Turbine at Micro Scale
,” ASME Paper No. 2001-GT-101.
3.
Sirakov
,
B. T.
,
Gong
,
Y.
,
Epstein
,
A. H.
, and
Tan
,
C. S.
, 2004, “
Design and Characterization of Micro-Compressor Impellers
,” ASME Paper No. GT2004-53332.
4.
Onishi
,
T.
,
Burguburu
,
S.
,
Dessornes
,
O.
, and
Ribaud
,
Y.
, 2005, “
Numerical Design and Study of a MEMS-Based Micro Turbine
,” ASME Paper No. GT2005-68168.
5.
Bohn
,
D.
,
Bonhoff
,
B.
, and
Schonenborn
,
H.
, 1995, “
Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane
,” IGTC Paper No. 95-108.
6.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
, 2003, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,” ASME Paper No. GT2003-38553.
7.
Han
,
Z.-X.
,
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 2000, “
Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material
,” ASME Paper No. 2000-GT-253.
8.
Montenay
,
A.
,
Paté
,
L.
, and
Duboué
,
J.
, 2000, “
Conjugate Heat Transfer Analysis of an Engine Internal Cavity
,” ASME Paper No. 2000-GT-282.
9.
Verdicchio
,
J. A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
, 2001, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,” ASME Paper No. 2001-GT-0205.
10.
York
,
W. D.
, and
Leylek
,
J. H.
, 2003, “
Three-Dimensional Conjugate Heat Transfer Simulation of An Internally-Cooled Gas Turbine Vane
,” ASME Paper No. GT2003-38551.
11.
Bohn
,
D.
,
Heuer
,
T.
, and
Kusterer
,
K.
, 2003, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Gharger—Part I: Numerical Results
,” ASME Paper No. GT2003-38445.
12.
Arnone
,
A.
, 1994, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
435
445
.
13.
Grag
,
V. K.
, 2002, “
Heat Transfer Research on Gas Turbine Airfoils at NASA GRC
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
109
136
.
14.
SAMCEF FEA code by Samtech Group, www.samcef.comwww.samcef.com
15.
Lassaux
,
G.
,
Daux
,
S.
, and
Descamps
,
L.
, 2004, “
Conjugate Heat Transfer Analysis of a Tri-Dimensional Turbine Blade Internal Cavity
,” 24th ICAS.
16.
Shepard
,
D.
, 1968, “
A Two-Dimensional Interpolation Function for Irregularly Spaced Data
,”
Proc. 23rd ACM National Conference
, ACM, New York, pp.
517
524
.
17.
Daily
,
J. W.
, and
Nece
,
R. E.
, 1960, “
Chamber Dimension Effects on Reduced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
0021-9223,
82
(
1
), pp.
217
232
.
18.
Van den Braembussche
,
R. A.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
, 2004, “
Heat and Power Balance in Micro Gasturbine Rotors
,”
Proc. of POWERMEMS
, Kyoto, Japan, pp.
84
87
.
You do not currently have access to this content.