The conjugate heat transfer methodology has been employed to predict the flow and thermal properties including the metal temperature of a NASA turbine vane at three operating conditions. The turbine vane was cooled internally by air flowing through ten round pipes. The conjugate heat transfer methodology allows a simultaneous solution of aerodynamics and heat transfer in the external hot gas and the internal cooling passages and conduction within the solid metal, eliminating the need for multiple/decoupled solutions in a typical industry design process. The model of about 3 million computational meshes includes the gas path and the internal cooling channels, comprising hexa cells, and the solid metal comprising hexa and prism cells. The predicted aerodynamic loadings were found to be in close agreement with the data for all the cases. The predicted metal temperature, external, and internal heat transfer distributions at the midspan compared well with the measurement. The differences in the heat transfer rates and metal temperature under different running conditions were also captured well. The V2F turbulence model has been compared with a low-Reynolds-number k-ε model and a nonlinear quadratic k-ε model. The V2F model is found to provide the closest agreement with the data, though it still has room for improvement in predicting the boundary layer transition and turbulent heat transfer, especially on the suction side. The overall results are quite encouraging and indicate that conjugate heat transfer simulation with proper turbulence closure has the potential to become a viable tool in turbine heat transfer analysis and cooling design.

1.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
J Wiley
,
New York
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
London, U.K
.
3.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
J. Turbomach.
0889-504X,
123
, pp.
637
686
.
4.
Bohn
,
D. E.
,
Bonhoff
,
B.
, and
Schonenborn
,
H.
, 1995, “
Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane
,” IGTC Paper No. 95-108.
5.
Han
,
Z. X.
,
Dennis
,
B.
, H., and
Dulikravich
,
G. S.
, 2000, “
Simultaneous Prediction of External Flowfield and Temperature in Internally-Cooled 3-D Gas Turbine Blade Material
,” ASME Paper No. GT2000-253.
6.
Rigby
,
D. L.
, and
Lepicovsky
,
J.
, 2001, “
Conjugate Heat Transfer Analysis of Internally-Cooled Configurations
,” ASME Paper No. GT2001-0405.
7.
Bohn
,
D. E.
,
Ren
,
J.
, and
Kusterer
,
K.
, 2003, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations with Different Hole Geometries
,” ASME Paper No. GT2003-38369.
8.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
, 2003, “
Conjugate Heat Transfer Effects on Realistic Film-Cooled Turbine Vane
,” ASME Paper No. GT2003-38553.
9.
York
,
D. W.
, and
Leylek
,
J. H.
, 2003, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane
,” ASME Paper No. GT2003-38551.
10.
Facchini
,
B.
,
Magi
,
A.
, and
Greco
,
A. S.
,
, 2004, “
Conjugate Heat Transfer of a Radially Cooled Gas Turbine Vane
,” ASME Paper No. GT2004-54213.
11.
Zecchi
,
S.
,
Arcangeli
,
L.
, and
Facchini
,
B.
, 2004, “
Features of a Cooling System Simulation Tool Used in Industrial Preliminary Design Stage
,” ASME Paper No. GT2004-53547.
12.
Takahashi
,
T.
,
Watanabe
,
K.
, and
Sakai
,
T.
, 2005, “
Conjugate Heat Transfer Analysis of a Rotor Blade with Rib-roughened Internal Cooling Passages
,” ASME Paper No. GT2005-68227.
13.
Agostini
,
F.
, and
Arts
,
T.
, 2005, “
Conjugate Heat Transfer Investigation of Rib-Roughened Cooling Channels
,” ASME Paper No. GT2005-68166.
14.
Kusterer
,
K.
,
Hagedorn
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2005, “
Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique
,” ASME Paper No. GT2005-68555.
15.
Durbin
,
P. A.
, 1991, “
Near-Wall Turbulence Closure Modeling without Damping Functions
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
, pp.
1
13
.
16.
Durbin
,
P. A.
, 1993, “
Application of a Near-Wall Turbulence Closure to Boundary Layers and Heat Transfer
,”
Int. J. Heat Fluid Flow
0142-727X,
14
(
4
), pp.
316
323
.
17.
Iaccarino
,
G.
, 2000, “
Advanced Turbulence Modeling for RANS Simulations
,”
Proceedings STAR-CD European Users’ Meeting
.
18.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P.
, and
Behnia
,
M.
, 2002, “
Simulation of Turbulent Flow and Heat Transfer in Complex Passages
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
750
757
.
19.
Medic
,
G.
, and
Durbin
,
P. A.
, 2002, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
187
192
.
20.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
, 2002, “
Predictions of External Heat Transfer for Turbine Vanes and Blades with Secondary Flowfields
,” ASME Paper No. GT2002-30206.
21.
Ameri
,
A. A.
, and
Ajmani
,
K.
, 2004, “
Evaluation of Predicted Heat Transfer on a Transonic Blade Using v2-f Models
,” ASME Paper No. GT2004-53572.
22.
Sveningsson
,
A.
, and
Davidson
,
L.
, 2004, “
Computations of Flow Field and Heat Transfer in a Stator Vane Passage Using the V2F Turbulence Model
,” ASME Paper No. GT2004-53586.
23.
Pecnik
,
R.
,
Pieringer
,
P.
, and
Sanz
,
W.
, 2005, “
Numerical Investigation of the Secondary Flow of a Transonic Turbine Stage Using Various Turbulence Closures
,” ASME Paper No. GT2005-68754.
24.
Ibrahim
,
M.
,
Kochuparambil
,
B. J.
,
Ekkad
,
S. V.
, and
Simon
,
T. W.
, 2005, “
CFD for Jet Impingement Heat Transfer with Single Jets and Arrays
,” ASME Paper No. GT2005-68341.
25.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
, 1983, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA Paper No. CR-168015.
26.
STAR-CD Version 3.20-Methodology
, 2004, CD-adapco Group, New York.
27.
Schmidt
,
R.
, and
Patankar
,
S.
, 1992, “
Simulating Boundary Layer Transition with Low-Reynolds-Number k-ε Turbulence Models: Part 1-An Evaluation of Prediction Characteristics
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
10
17
.
28.
Savill
,
A. M.
, 1993, “
Some Recent Progress in the Turbulence Modeling of By-Pass Transition
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
, et al.
, ed.,
Elsevier
,
New York
.
29.
Taulbee
,
D. B.
, and
Tran
,
L.
, 1988, “
Stagnation Streamline Turbulence
,”
AIAA J.
0001-1452,
26
(
8
), pp.
1011
1013
.
30.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas-Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
You do not currently have access to this content.