Predictions of time-resolved flowfields are now commonplace within the gas-turbine industry, and the results of such simulations are often used to make design decisions during the development of new products. Hence it is necessary for design engineers to have a robust method to determine the level of convergence in design predictions. Here we report on a method developed to determine the level of convergence in a predicted flowfield that is characterized by periodic unsteadiness. The method relies on fundamental concepts from digital signal processing including the discrete Fourier transform, cross correlation, and Parseval’s theorem. Often in predictions of vane–blade interaction in turbomachines, the period of the unsteady fluctuations is expected. In this method, the development of time-mean quantities, Fourier components (both magnitude and phase), cross correlations, and integrated signal power are tracked at locations of interest from one period to the next as the solution progresses. Each of these separate quantities yields some relative measure of convergence that is subsequently processed to form a fuzzy set. Thus the overall level of convergence in the solution is given by the intersection of these sets. Examples of the application of this technique to several predictions of unsteady flows from two separate solvers are given. These include a prediction of hot-streak migration as well as more typical cases. It is shown that the method yields a robust determination of convergence. Also, the results of the technique can guide further analysis and∕or post-processing of the flowfield. Finally, the method is useful for the detection of inherent unsteadiness in the flowfield, and as such it can be used to prevent design escapes.

1.
Adamczyk
,
J. J.
, 2000, “
Aerodynamic Analysis of Multi-Stage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
189
217
.
2.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
637
686
.
3.
Ni
,
R. H.
, 1982, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
(
11
), pp.
1565
1571
.
4.
Ni
,
R. H.
, and
Bogoian
,
J. C.
, 1989, “
Prediction of 3-D Multistage Turbine Flow Field Using a Multiple-Grid Euler Solver
,” AIAA Paper No. 89-0203.
5.
Ni
,
R. H.
, 1999, “
Advanced Modeling Techniques for New Commercial Engines
,”
Proceedings 14th ISOABE Conference
,
Florence, Italy
, 5–10 September.
6.
Davis
,
R. L.
,
Shang
,
T.
,
Buteau
,
J.
, and
Ni
,
R. H.
, 1996, “
Prediction of 3-D Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach
,” AIAA Paper No. 96-2565.
7.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
, 1970, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
0096-736X,
70
, pp.
309
332
.
8.
Hilbert
,
G. R.
,
Ni
,
R. H.
, and
Takahashi
,
R. K.
, 1997, “
Forced-Response Prediction of Gas Turbine Rotor Blades
,”
Proceedings ASME Winter Annual Meeting
, Dallas, TX.
9.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Magge
,
S. S.
, and
Price
,
F. R.
, 2002, “
Using CFD to Reduce Resonant Stresses on a Single-Stage, High-Pressure Turbine Blade
,” ASME Paper No. GT2002-30320.
10.
Green
,
J. S.
, and
Marshall
,
J. G.
, 1999, “
Forced Response Prediction Within the Design Cycle
,”
IMechE Conf. Trans.
1356-1448,
1999-1A
, pp.
377
391
.
11.
Weaver
,
M. M.
,
Manwaring
,
S. R.
,
Abhari
,
R. S.
,
Dunn
,
M. G.
,
Salay
,
M. J.
,
Frey
,
K. K.
, and
Heidegger
,
N.
, 2000, “
Forcing Function Measurements and Predictions of a Transonic Vaneless Counter-Rotating Turbine
,” ASME Paper No. 2000-GT-375.
12.
Huber
,
F.
,
Johnson
,
P. D.
,
Sharma
,
O. P.
,
Staubach
,
J. B.
, and
Gaddis
,
S. W.
, 1996, “
Performance Improvement Through Indexing of Turbine Airfoils: Part 1—Experimental Investigation
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
630
635
.
13.
Griffin
,
L. M.
,
Huber
,
F. W.
, and
Sharma
,
O. P.
, 1996, “
Performance Improvement Through Indexing of Turbine Airfoils: Part 2—Numerical Simulation
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
636
642
.
14.
Dorney
,
D. J.
, and
Sharma
,
O. P.
, 1996, “
A Study of Turbine Performance Increases Through Clocking
,” AIAA Paper No. 96-2816.
15.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
, 2004, “
Experimental Investigation of Vane Clocking in a One and 1∕2 Stage High Pressure Turbine
,” ASME Paper No. GT2004-5347.
16.
Shang
,
T.
, and
Epstein
,
A. H.
, 1997, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
544
553
.
17.
Takahashi
,
R. K.
,
Ni
,
R. H.
,
Sharma
,
O. P.
, and
Staubach
,
J. B.
, 1996, “
Effects of Hot Streak Indexing in a 1‐1∕2 Stage Turbine
,” AIAA Paper No. 96-2796.
18.
Dorney
,
D. J.
, and
Gundy-Burlet
,
K.
, 2000, “
Hot-Streak Clocking Effects in a 1‐1∕2 Stage Turbine
,”
J. Propul. Power
0748-4658,
12
(
3
), pp.
619
620
.
19.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
, “
Influence of Hot Streak Circumferential Length-Scale in a Transonic Turbine Stage
,” ASME Paper No. GT2004-53370.
20.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
21.
Gokaltun
,
S.
,
Skudarnov
,
P. V.
, and
Lin
,
C-X.
, 2005, “
Verification and Validation of CFD Simulation of Pulsating Laminar Flow in a Straight Pipe
,” AIAA Paper No. 2005-4863.
22.
AIAA Policy Board
, 1998, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” AIAA Policy Paper No. G-077-1998.
23.
Freitas
,
C. J.
, 1993, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
0098-2202,
115
(
2
), p.
339
.
24.
Laumert
,
B.
,
Martensson
,
H.
, and
Fransson
,
T. H.
, 2001, “
Investigation of Unsteady Aerodynamic Blade Excitation Mechanisms in a Transonic Turbine Stage, Part I: Phenomenological Identification and Classification
,” ASME Paper No. 2001-GT-0258.
25.
Ahmed
,
M. H.
, and
Barber
,
T. J.
, 2005, “
Fast Fourier Transform Convergence Criterion for Numerical Simulations of Periodic Fluid Flows
,”
AIAA J.
0001-1452,
43
(
5
), pp.
1042
1052
.
26.
Staubach
,
J. B.
, 2003, “
Multidisciplinary Design Optimization, MDO, the Next Frontier of CAD∕CAE in the Design of Aircraft Propulsion Systems
,” AIAA Paper No. 2003-2803.
27.
Ifeachor
,
E. C.
, and
Jervis
,
B. W.
, 1996,
Digital Signal Processing
,
Addison-Wesley
,
New York
.
28.
Mathworks
, 2000
Signal Processing Toolbox User’s Guide
, Version 5, Natick, MA.
29.
Klir
,
G. J.
,
St. Clair
,
U. H.
, and
Yuan
,
B.
, 1997,
Fuzzy Set Theory: Foundations and Applications
,
Prentice–Hall PTR
,
Upper Saddle River, NJ
.
30.
Clark
,
J. P.
, and
Yuan
,
B.
, 1998, “
Using Fuzzy Logic to Detect Turbulent∕Non-Turbulent Interfaces in an Intermittent Flow
,”
Intelligent Automation and Control
, Vol.
6
,
TSI Press
,
Albuquerque, NM
, pp.
113
118
.
31.
Zimmermann
,
H. J.
, 1990,
Fuzzy Set Theory and Its Applications
, 2nd ed.,
Kluwer
,
Boston, MA
.
32.
Klir
,
G. J.
, and
Yuan
,
B.
, 1995,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Prentice–Hall PTR
,
Upper Saddle River, NJ
.
33.
Johnson
,
P. D.
, 2005, “
Consortium Turbine Research Rig, Aerothermal and Mechanical Design
,” AFRL, WPAFB, OH, AFRL Technical Report No. AFRL-PR-WP-TR-2005-2157.
34.
Dorney
,
D. J.
, and
Davis
,
R. L.
, 1992, “
Navier–Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
795
806
.
35.
Rai
,
M. M.
, 1987, “
Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
0748-4658,
3
, pp.
387
396
.
36.
Rai
,
M. M.
, and
Madavan
,
N. K.
, 1990, “
Multi-Airfoil Navier-Stokes Simulations of Turbine Rotor-Stator Interaction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
377
384
.
37.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2003, “
Turbine Tip and BOAS Heat Transfer and Loading, Part A: Parameter Effects Including Reynolds Number, Pressure Ratio and Gas to Metal Temperature Ratio
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
97
106
.
38.
Clark
,
J. P.
,
Polanka
,
M. D.
,
Meininger
,
M.
, and
Praisner
,
T. J.
, 2006, “
Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
589
595
.
39.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
, 1985, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
998
1006
.
40.
Munk
,
M.
, and
Prim
,
R.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
You do not currently have access to this content.