Film cooling adiabatic effectiveness for axial and compound angle holes on the suction side of a simulated turbine vane was investigated to determine the relative performance of these configurations. The effect of the surface curvature was also evaluated by comparing to previous curvature studies and flat plate film cooling results. Experiments were conducted for varying coolant density ratio, mainstream turbulence levels, and hole spacing. Results from these measurements showed that for mild curvature, , flat plate results are sufficient to predict the cooling effectiveness. Furthermore, the compound angle injection improves adiabatic effectiveness for higher blowing ratios, similar to previous studies using flat plate facilities.
Issue Section:
Technical Papers
Keywords:
turbines,
blades,
cooling,
turbulence,
film cooling,
compound angle,
curvature,
turbine vane
Topics:
Coolants,
Cooling,
Film cooling,
Flat plates,
Suction,
Turbines,
Turbulence,
Density,
Resolution (Optics)
1.
Schmidt
, D. L.
, and Bogard
, D. G.
, 1997, “Effects of Free-stream Turbulence and Surface Roughness on Laterally Injected Film Cooling
,” Proceedings of National Heat Transfer Conference
, HTD-Vol. 350
, Baltimore, MD, August 8–12.2.
Schmidt
, D. L.
, Sen
, B.
, and Bogard
, D. G.
, 1996, “Film Cooling with Compound Angle Holes: Adiabatic Effectiveness
,” ASME J. Turbomach.
0889-504X, 118
, pp. 807
–813
.3.
Ito
, S.
, Goldstein
, R. J.
, and Eckert
, E. R. G.
, 1978, “Film Cooling of a Gas Turbine Blade
,” J. Eng. Power
0022-0825, 100
, pp. 476
–481
.4.
Schwarz
, S. G.
, Goldstein
, R. J.
, and Eckert
, E. R. G.
, 1990, “The Influence of Curvature on Film Cooling Performance
,” ASME J. Turbomach.
0889-504X, 100
, pp. 472
–478
.5.
Takeishi
, K.
, Aoki
, S.
, Sato
, T.
, and Tsukagoshi
, K.
, 1991, “Film Cooling on a Gas Turbine Rotor Blade
,” ASME J. Turbomach.
0889-504X, 114
, pp. 828
–834
.6.
Ou
, S.
, and Han
, J. C.
, 1994, “Unsteady Wake Effects on Film Effectiveness and Heat Transfer Coefficient from a Turbine Blade with One Row of Air and CO2 Film Injection
,” J. Heat Transfer
0022-1481, 116
, pp. 921
–928
.7.
Ligrani
, P. M.
, Wigle
, J. M.
, Ciriello
, S.
, and Jackson
, S. M.
, 1994, “Film Cooling from Holes with Compound Angle Orientations: Part 2—Results Downstream of a Single Row of Holes with 6D Spanwise Spacing
,” Int. J. Heat Mass Transfer
0017-9310, 116
, pp. 353
–362
.8.
Lander
, R. D.
, Fish
, R. W.
, and Suo
, M.
, 1972, “External Heat Transfer Distribution on Film Cooled Turbine Vase
,” J. Aircr.
0021-8669, 9
, pp. 707
–714
.9.
Goldstein
, R. J.
, Kornblum
, Y.
, and Eckert
, E. R. G.
, 1982, “Film Cooling Effectiveness on a Turbine Blade
,” Isr. J. Technol.
0021-2202, 20
, pp. 193
–200
.10.
Takeishi
, K.
, Matsuura
, M.
, Aoki
, S.
, and Sato
, T.
, 1990, “An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,” ASME J. Turbomach.
0889-504X, 112
, pp. 488
–496
.11.
Ligrani
, P. M.
, Wigle
, J. M.
, Ciriello
, S.
, and Jackson
, S. M.
, 1994, “Film Cooling from Holes with Compound Angle Orientations: Part 1—Results Downstream of a Two Staggered Rows of Holes with 3D Spanwise Spacing
,” Int. J. Heat Mass Transfer
0017-9310, 116
, pp. 341
–352
.12.
Dittmar
, J.
, Schulz
, A.
, and Wittig
, S.
, 2003, “Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,” ASME J. Turbomach.
0889-504X, 125
, pp. 57
–64
.13.
Lutum
, E.
, von Wolfersdorf
, J.
, Weigand
, B.
, and Semmler
, K.
, 2000, “Film Cooling on a Convex Surface with Zero Pressure Gradient Flow
,” Int. J. Heat Mass Transfer
0017-9310, 43
, pp. 2973
–2987
.14.
Kruse
, H.
, 1985, “Effects of Hole Geometry, Wall Curvature, and Pressure Gradient on Film Cooling Downstream of a Single Row
,” AGARD Conference Proceedings
, Vol. 309
, pp. 8.1
–8.13
.15.
Schwarz
, S. G.
, and Goldstein
, R. J.
, 1988, “The Two-Dimensional Behaviour of Film Cooling Jets on Concave Surfaces
,” SME Paper No. 88-GT-161.16.
Lutum
, E.
, von Wolfersdorf
, J.
, Semmler
, K.
, Dittmar
, J.
, and Weigand
, B.
, 2001, “An Experimental Investigation of Film Cooling on a Convex Surface Subjected to Favourable Pressure Gradient Flow
,” Int. J. Heat Mass Transfer
0017-9310, 44
, pp. 939
–951
.17.
Rutledge
, J. L.
, Robertson
, D. R.
, and Bogard
, D. G.
, 2005, “Degradation of Film Cooling Performance on a Turbine Vane Suction Side due to Surface Roughness
,” ASME Paper No. GT2005-69045.18.
Schlichting
, H.
, 1968, Boundary Layer Theory
, 6th ed., McGraw-Hill
, New York, pp. 192
–201, 470
.19.
Ethridge
, M. I.
, Cutbirth
, J. M.
, and Bogard
, D. G.
, 2001, “Scaling of Performance for Varying Density Ratio Coolants on an Airfoil with Strong Curvature and Pressure Gradient Effects
,” ASME J. Turbomach.
0889-504X, 123
, pp. 231
–237
.20.
Moffat
, R. J.
, 1988, “Describing the Uncertainties in Experimental Results
,” Exp. Therm. Fluid Sci.
0894-1777, 1
, pp. 3
–17
.21.
Goldstein
, R. J.
, and Stone
, L. D.
, 1994, “Row-of-Holes Film Cooling of a Convex and a Concave Wall at Low Injection Angles
,” Clim. Change
0165-0009, 28
, pp. 15
–29
.22.
Lutum
, E.
, and Johnson
, B. V.
, 1999, “Influence of the Hole Length-to-Diameter Ratio on Film Cooling with Cylindrical Holes
,” ASME J. Turbomach.
0889-504X, 121
, pp. 209
–216
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.