Time-mean endwall heat transfer and flow-field data in the endwall region are presented for a turbulent juncture flow formed with a symmetric bluff body. The experimental technique employed allowed the simultaneous recording of instantaneous particle image velocimetry flow field data, and thermochromic liquid-crystal-based endwall heat transfer data. The time-mean flow field on the symmetry plane is characterized by the presence of primary (horseshoe), secondary, tertiary, and corner vortices. On the symmetry plane the time-mean horseshoe vortex displays a bimodal vorticity distribution and a stable-focus streamline topology indicative of vortex stretching. Off the symmetry plane, the horseshoe vortex grows in scale, and ultimately experiences a bursting, or breakdown, upon experiencing an adverse pressure gradient. The time-mean endwall heat transfer is dominated by two bands of high heat transfer, which circumscribe the leading edge of the bluff body. The band of highest heat transfer occurs in the corner region of the juncture, reflecting a 350% increase over the impinging turbulent boundary layer. A secondary high heat-transfer band develops upstream of the primary band, reflecting a 250% heat transfer increase, and is characterized by high levels of fluctuating heat load. The mean upstream position of the horseshoe vortex is coincident with a region of relatively low heat transfer that separates the two bands of high heat transfer.

1.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1976, “
Three-dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
2.
Sjolander
,
S. A.
, 1975, “
The End Wall Boundary Layer in an Annular Cascade of Turbine Nozzle Guide Vanes
,”
Carleton University
, Department of Mechanical and Aeronautical Engineering, Ottawa, Canada, TR ME∕A 75-4.
3.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
4.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
12
.
5.
Hippensteele
,
S. A.
, and
Russell
,
L. M.
, 1988, “
High Resolution Liquid-Crystal Heat-Transfer Measurements on the End Wall of a Turbine Passage With Variations in Reynolds Number
,” NASA Technical Memorandum 100827.
6.
Giel
,
P. W.
,
Thurman
,
D. R.
,
VanFossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
, 1998, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
305
313
.
7.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
8.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
, 1978, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
0022-1120,
86
, pp.
179
200
.
9.
Praisner
,
T. J.
, and
Smith
,
C. R.
, 2006, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
747
754
.
10.
Eckerle
,
W. A.
, and
Langston
,
L. S.
, 1987, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
278
284
.
11.
Dickinson
,
S. C.
, 1988, “
Time Dependent Flow Visualization in the Separated Region of an Appendage-Flat Plate Junction
,”
Exp. Fluids
0723-4864,
6
, pp.
140
143
.
12.
Devenport
,
W. J.
, and
Simpson
,
R. L.
, 1990, “
Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
0022-1120,
210
, pp.
23
55
.
13.
Pierce
,
F. J.
, and
Shin
,
J.
, 1992, “
The Development of a Turbulent Junction Vortex System
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
559
565
.
14.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1986, “
Detailed Measurements of Heat Transfer on and Around a Pedestal in Fully Developed Passage Flow
,”
Proceedings, 8th International Heat Transfer Conference
,
C. L.
Tien
et al.
, eds.,
Hemisphere Publishing
,
Washington, D.C.
, Vol.
3
, pp.
975
980
.
15.
Lewis
,
D. J.
,
Simpson
,
R. L.
, and
Diller
,
T. E.
, 1994, “
Time-Resolved Surface Heat Flux Measurements in the Wing∕Body Junction Vortex
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
4
), pp.
656
663
.
16.
Praisner
,
T. J.
,
Seal
,
C. V.
,
Takmaz
,
L.
, and
Smith
,
C. R.
, 1997, “
Spatial-Temporal Turbulent Flow-Field and Heat Transfer Behavior in End-Wall Junctions
,”
Int. J. Heat Fluid Flow
0142-727X,
18
(
1
), pp.
142
151
.
17.
Blair
,
M. F.
, 1984, “
An Experimental Study of Heat Transfer and Film Cooling on Large-scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
524
529
.
18.
Yoo
,
S. Y.
,
Goldstein
,
R. J.
, and
Chung
,
M. K.
, 1993, “
Effects of Angle of Attack on Mass Transfer From a Square Cylinder and its Base Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
2
), pp.
371
380
.
19.
Praisner
,
T. J.
,
Sabatino
,
D. R.
, and
Smith
,
C. R.
, 2001, “
Simultaneously Combined Liquid-Crystal Surface Heat Transfer and PIV Flow-Field Measurements
,”
Exp. Fluids
0723-4864,
30
, pp.
1
10
.
20.
Sabatino
,
D. R.
,
Praisner
,
T. J.
, and
Smith
,
C. R.
, 2001, “
A High-Accuracy Calibration Technique for Thermochromic Liquid Crystal Temperature Measurement
,”
Exp. Fluids
0723-4864,
28
, pp.
497
505
.
21.
Adrian
,
R. J.
, 1991, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
261
304
.
22.
Rockwell
,
D.
,
Magness
,
C.
,
Towfighi
,
J.
,
Akin
,
O.
, and
Corcoran
,
T.
, 1993, “
High Image-Density Particle Image Velocimetry Using Laser Scanning Techniques
,”
Exp. Fluids
0723-4864,
14
, pp.
181
192
.
23.
Praisner
,
T. J.
, 1998, “
Investigation of Turbulent Juncture Flow Endwall Heat Transfer and Fluid Flow
,” Ph.D. thesis, Lehigh University, Department of Mechanical Engineering and Mechanics.
24.
Ishii
,
J.
, and
Honami
,
S.
, 1986, “
A Three-dimensional Turbulent Detached Flow With a Horseshoe Vortex
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
125
130
.
25.
Perry
,
A. E.
, and
Steiner
,
T. R.
, 1987, “
Large-Scale Vortex Structures in Turbulent Wakes Behind Bluff Bodies, Part 1. Vortex Formation
,”
J. Fluid Mech.
0022-1120,
174
, pp.
233
270
.
26.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
173
183
.
27.
Puhak
,
R. I.
,
Degani
,
A. T.
, and
Walker
,
J. D. A.
, 1995, “
Unsteady Separation and Heat Transfer Upstream of Obstacles
,”
J. Fluid Mech.
0022-1120,
305
, pp.
1
27
.
You do not currently have access to this content.