A computer code for solving the Reynolds-averaged full Navier–Stokes equations has been developed and applied using H- and C-type grids. The Baldwin–Lomax eddy-viscosity model is used for turbulence closure. The integration in time is based on an explicit four-stage Runge–Kutta scheme. Local time stepping, variable coefficient implicit residual smoothing, and a full multigrid method have been implemented to accelerate steady-state calculations. A grid independence analysis is presented for a transonic rotor blade. Comparisons with experimental data show that the code is an accurate viscous solver and can give very good blade-to-blade predictions for engineering applications.

This content is only available via PDF.
You do not currently have access to this content.