Graphical Abstract Figure

Comprehensive simulation test rig for mechanical failure

Graphical Abstract Figure

Comprehensive simulation test rig for mechanical failure

Close modal

Abstract

Bearing clearance is a common issue in mechanical systems due to unavoidable assembly errors, leading to weak fault features that are challenging to detect. This study introduces a novel diagnostic technique for detecting bearing clearance faults using the Elman neural network (ENN)-based long short-term memory (LSTM). The raw vibration data from an accelerometer are processed using the fast Fourier transform (FFT) to extract frequency-domain features. ENN is employed to identify clearance faults under various operating conditions, while LSTM captures temporal dependencies in the data. This hybrid ENN-LSTM approach eliminates the need for manual feature extraction, reducing the risk of errors associated with expert-driven methods. The proposed method demonstrates robust generalization performance and achieves an average fault identification accuracy of 99.16% across different operating conditions. This research offers valuable insights for improving fault diagnostics in rotor-bearing systems.

References

1.
Ali
,
A.
, and
Abdelhadi
,
A.
,
2022
, “
Condition-Based Monitoring and Maintenance: State of the Art Review
,”
Appl. Sci.
,
12
(
2
), pp.
688
699
.
2.
Gao
,
J.
, and
Wang
,
Y.
,
2013
, “
The Research on the Methods of Diagnosing the Steam Turbine Based on the Elman Neural Network
,”
J. Software Eng. Appl.
,
6
(
3B
), pp.
87
90
.
3.
Sendhilkumar
,
S.
,
Mohanasundaram
,
N.
,
Senthilkumar
,
M.
, and
Sivanandam
,
S. N.
,
2016
, “
Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
,”
World Acad. Sci. Eng. Technol. Int. J. Mech. Mechatron. Eng.
,
10
(
3
), pp.
1
15
. doi.org/10.5281/zenodo.1124759
4.
Şeker
,
S.
,
Ayaz
,
E.
, and
Türkcan
,
E.
,
2003
, “
Elman’s Recurrent Neural Network Applications to Condition Monitoring in Nuclear Power Plant and Rotating Machinery
,”
Eng. Appl. Artif. Intell.
,
16
(
7–8
), pp.
647
656
.
5.
Fu
,
Q.
,
Jing
,
B.
,
He
,
P.
,
Si
,
S.
, and
Wang
,
Y.
,
2018
, “
Fault Feature Selection and Diagnosis of Rolling Bearings Based on EEMD and Optimized Elman_Ada-Boost Algorithm
,”
IEEE Sens. J.
,
18
(
12
), pp.
5024
5034
.
6.
Yang
,
L.
,
Wang
,
F.
,
Zhang
,
J.
, and
Ren
,
W.
,
2019
, “
Remaining Useful Life Prediction of Ultrasonic Motor Based on Elman Neural Network With Improved Particle Swarm Optimization
,”
Measurement
,
143
(
1
), pp.
27
38
.
7.
Gao
,
X. Z.
,
Ovaska
,
S. J.
, and
Dote
,
Y.
,
2000
, “
Motor Fault Detection Using Elman Neural Network With Genetic Algorithm-Aided Training
,”
SMC 2000 Conference Proceedings, 2000 IEEE International Conference on Systems, Man and Cybernetics, ‘Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’
,
Nashville, TN
,
Oct. 8–10
, pp.
2386
2392
.
8.
Chong
,
S.
,
Rui
,
S.
,
Jie
,
L.
,
Xiaoming
,
Z.
,
Jun
,
T.
,
Yunbo
,
S.
,
Jun
,
L.
, and
Huiliang
,
C.
,
2016
, “
Temperature Drift Modeling of MEMS Gyroscope Based on Genetic-Elman Neural Network
,”
Mech. Syst. Signal Process.
,
72
(
1
), pp.
897
905
.
9.
Rai
,
A.
, and
Upadhyay
,
S. H.
,
2017
, “
The Use of MD-CUMSUM and NARX Neural Network for Anticipating the Remaining Useful Life of Bearings
,”
J. Meas.
,
111
(
1
), pp.
397
410
.
10.
Huang
,
T.
,
Zhang
,
Q.
,
Tang
,
X.
,
Zhao
,
S.
, and
Lu
X.
,
2022
, “
A Novel Fault Diagnosis Method Based on CNN and LSTM and Its Application in Fault Diagnosis for Complex Systems
,”
Artif. Intell. Rev.
,
55
(
2
), pp.
1289
1315
.
11.
Yu
,
L.
,
Qu
,
J.
,
Gao
,
F.
, and
Tian
,
Y.
,
2019
, “
A Novel Hierarchical Algorithm for Bearing Fault Diagnosis Based on Stacked LSTM
,”
Shock Vib.
,
2019
(
1
), pp.
1
12
.
12.
Kumar
,
S.
, and
Ganga
,
D.
,
2023
, “
Combinational Framework for Classification of Bearing Faults in Rotating Machines
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021012
.
13.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
, and
Bechini
,
G.
,
2023
, “
Detection of the Onset of Trip Symptoms Embedded in Gas Turbine Operating Data
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031023
.
14.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
.
15.
Gecgel
,
O.
,
Dias
,
J. P.
,
Ekwaro-Osire
,
S.
,
Alves
,
D. S.
,
Machado
,
T. H.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
, and
Cavalca
,
K. L.
,
2020
, “
Simulation-Driven Deep Learning Approach for Wear Diagnostics in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
143
(
8
), p.
084501
.
16.
Ranawat
,
N. S.
,
Prakash
,
J.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2023
, “
Fuzzy Recurrence Plots for Shallow Learning-Based Blockage Detection in a Centrifugal Pump Using Pre-Trained Image Recognition Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051015
.
17.
Mubarak
,
A.
,
Asmelash
,
M.
,
Azhari
,
A.
,
Haggos
,
F. Y.
, and
Mulubrhan
,
F.
,
2022
, “
Machine Health Management System Using Moving Average Feature With Bidirectional Long-Short Term Memory
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031002
.
18.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
.
19.
Sharma
,
A.
,
2022
, “
Fault Diagnosis of Bearings Using Recurrences and Artificial Intelligence Techniques
,”
ASME J Nondestr. Eval.
,
5
(
3
), p.
031004
.
20.
Thoppil
,
N. M.
,
Vasu
,
V.
, and
Rao
,
C. S. P.
,
2021
, “
Bayesian Optimization LSTM/Bi-LSTM Network With Self-Optimized Structure and Hyperparameters for Remaining Useful Life Estimation of Lathe Spindle Unit
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021012
.
21.
Xia
,
T.
,
Zhuo
,
P.
,
Xiao
,
L.
,
Du
,
S.
,
Wang
,
D.
, and
Xi
,
L.
,
2021
, “
Multi-Stage Fault Diagnosis Framework for Rolling Bearing Based on OHF Elman AdaBoost-Bagging Algorithm
,”
Neurocomputing
,
433
, pp.
237
251
.
22.
Gao
,
D.
,
Zhu
,
Y.
,
Ren
,
Z.
,
Yan
,
K.
, and
Kang
,
W.
,
2021
, “
A Novel Weak Fault Diagnosis Method for Rolling Bearings Based on LSTM Considering Quasi-Periodicity
,”
Knowledge-Based Syst.
,
231
, p.
107413
.
23.
Zhang
,
H.
,
Xi
,
X.
, and
Pan
,
R.
,
2023
, “
A Two-Stage Data-Driven Approach to Remaining Useful Life Prediction via Long Short-Term Memory Networks
,”
Reliab. Eng. Syst. Saf.
,
237
, p.
109332
.
24.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
25.
Khorram
,
A.
,
Khalooei
,
M.
, and
Rezghi
,
M.
,
2021
, “
End-to-End CNN + LSTM Deep Learning Approach for Bearing Fault Diagnosis
,”
Appl. Intell.
,
51
(
1
), pp.
736
751
.
26.
Wang
,
Y.
,
Zhang
,
F.
, and
Cui
,
T.
,
2016
, “
Fault Diagnosis for Manifold Absolute Pressure Sensor (MAP) of Diesel Engine Based on Elman Neural Network Observer
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
386
395
.
27.
Mao
,
W.
,
Feng
,
W.
, and
Liang
,
X.
,
2019
, “
A Novel Deep Output Kernel Learning Method for Bearing Fault Structural Diagnosis
,”
Mech. Syst. Signal Process
,
117
, pp.
293
318
.
28.
Zhou
,
W.
,
Habetler
,
T. G.
, and
Harley
,
R. G.
,
2008
, “
Bearing Fault Detection Via Stator Current Noise Cancellation and Statistical Control
,”
IEEE Trans. Ind. Electron.
,
55
(
12
), pp.
4260
4269
.
29.
Al Mamun
,
A.
,
Bappy
,
M. M.
,
Mudiyanselage
,
A. S.
,
Li
,
J.
,
Jiang
,
Z.
,
Tian
,
Z.
,
Fuller
,
S.
,
Falls
,
T. C.
,
Bian
,
L.
, and
Tian
,
W.
,
2023
, “
Multi-Channel Sensor Fusion for Real-Time Bearing Fault Diagnosis by Frequency-Domain Multilinear Principal Component Analysis
,”
Int. J. Adv. Manuf. Technol.
,
124
(
3–4
), pp.
1321
1334
.
30.
Wang
,
X.
,
Mao
,
D.
, and
Li
,
X.
,
2021
, “
Bearing Fault Diagnosis Based on Vibro-Acoustic Data Fusion and 1D-CNN Network
,”
Measurement
,
173
, p.
108518
.
31.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis
, Vol.
2
,
Taylor & Francis
,
Boca Raton
, FL.
32.
Oswald
,
F. B.
,
Zaretsky
,
E. V.
, and
Poplawski
,
J. V.
,
2012
, “
Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings
,”
Tribol. Trans.
,
55
(
2
), pp.
245
265
.
33.
Xu
,
M.
,
Feng
,
G.
,
He
,
Q.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
Vibration Characteristics of Rolling Element Bearings With Different Radial Clearances for Condition Monitoring of Wind Turbine
,”
Appl. Sci.
,
10
(
14
), p.
4731
.
You do not currently have access to this content.