Abstract

Titanium alloys are widely used in demanding applications due to their exceptional strength-to-weight ratio, high-temperature resilience, and excellent corrosion resistance. Understanding their tribological behavior is critical, as the performance and durability of several mechanical systems, particularly in gas turbine engines, are often constrained by friction and wear in complex contacting and mobile assemblies. This study investigates the tribological behavior of two widely used titanium alloys, Ti–6–4 and Ti–6–2–4–2, focusing on their interfacial phenomena under varied operational conditions. Tribological testing was conducted using a reciprocating tribometer at different temperatures and loading conditions. Ex situ analyses revealed that wear mechanisms were heavily influenced by the properties of the oxide layer formed during sliding. Under higher loads, the oxide layer on the alloy surface fractured, resulting in the generation of flake-like debris, which contributed to third-body abrasion. Additionally, the study examined the transfer film formation on the alumina counterface under various conditions, correlating friction, and wear behavior with interfacial processes, particularly the oxide formation on the worn surfaces. This study enhances the understanding of the tribological behavior of titanium alloys, paving the way for improved performance in demanding applications through advanced surface modification techniques.

References

1.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
(
1–2
), pp.
103
114
.
2.
Moiseyev
,
V. N.
,
2005
,
Titanium Alloys: Russian Aircraft and Aerospace Applications
,
CRC Press
,
Boca Raton, FL
.
3.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2017
,
Gas Turbine Theory
,
Pearson
,
Harlow
.
4.
Moustapha
,
H.
, and
Zelesky
,
M. F.
, eds,
2003
,
Axial and Radial Turbines
,
Concepts NREC
,
White River Junction, VT
.
5.
Anil Kumar
,
V.
,
Gupta
,
R. K.
,
Prasad
,
M. J. N. V.
, and
Narayana Murty
,
S. V. S.
,
2021
, “
Recent Advances in Processing of Titanium Alloys and Titanium Aluminides for Space Applications: A Review
,”
J. Mater. Res.
,
36
(
3
), pp.
689
716
.
6.
Allegheny Technologies Incorporated
,
2012
, “ATI Ti–6Al–4V, Grade 5 Technical Data Sheet,” Allegheny Technologies Incorporated (ATI), https://www.atimaterials.com/Products/Documents/datasheets/titanium/alloyed/ati_6-4_tds_en_v1.pdf, Accessed September 6, 2024.
7.
Allegheny Technologies Incorporated
,
2012
, “ATI 6-2-4-2™ Alloy Technical Data Sheet,” Allegheny Technologies Incorporated (ATI), Pittsburgh, PA, https://www.atimaterials.com/Products/Documents/datasheets/titanium/alloyed/ati_6-2-4-2_tds_en_v1.pdf, Accessed September 6, 2024.
8.
Sefer
,
B.
,
2014
,
Oxidation and Alpha-Case Phenomena in Titanium Alloys Used in Aerospace Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V
,
Luleå University of Technology
,
Luleå
.
9.
Unnam
,
J.
,
Shenoy
,
R. N.
, and
Clark
,
R. K.
,
1986
, “
Oxidation of Commercial Purity Titanium
,”
Oxid. Met.
,
26
(
3–4
), pp.
231
252
.
10.
Shenoy
,
R. N.
,
Unnam
,
J.
, and
Clark
,
R. K.
,
1986
, “
Oxidation and Embrittlement of Ti–6Al–2Sn–4Zr–2Mo Alloy
,”
Oxid. Met.
,
26
(
1–2
), pp.
105
124
.
11.
Patel
,
P.
,
Alidokht
,
S. A.
,
Sharifi
,
N.
,
Roy
,
A.
,
Harrington
,
K.
,
Stoyanov
,
P.
,
Chromik
,
R. R.
, and
Moreau
,
C.
,
2022
, “
Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings
,”
J. Therm. Spray Technol.
,
31
(
4
), pp.
1285
1301
.
12.
Patel
,
P.
,
Zala
,
A.
,
Parekh
,
T.
,
Kahar
,
S. D.
, and
Jamnapara
,
N. I.
,
2022
, “
High Temperature Oxidation Behavior of Thermal and Plasma Processed Aluminide Coated Ti6Al4V Alloys
,”
Surf. Coat. Technol.
,
447
, p.
128839
.
13.
Parekh
,
T.
,
Patel
,
P.
,
Sasmal
,
C. S.
, and
Jamnapara
,
N. I.
,
2020
, “
Effect of Plasma Processed Ti–Al Coating on Oxidation and Tensile Behavior of Ti6Al4V Alloy
,”
Surf. Coat. Technol.
,
394
, p.
125704
.
14.
Fargas
,
G.
,
Roa
,
J. J.
,
Sefer
,
B.
,
Pederson
,
R.
,
Antti
,
M.-L.
, and
Mateo
,
A.
,
2018
, “
Influence of Cyclic Thermal Treatments on the Oxidation Behavior of Ti–6Al–2Sn–4Zr–2Mo Alloy
,”
Mater. Charact.
,
145
, pp.
218
224
.
15.
Kahveci
,
A. I.
, and
Welsch
,
G. E.
,
1986
, “
Effect of Oxygen on the Hardness and Alpha/Beta Phase Ratio of Ti6A14V Alloy
,”
Scr. Metall.
,
20
(
9
), pp.
1287
1290
.
16.
Hosford
,
W. F.
,
2010
,
Physical Metallurgy
,
CRC Press
.
17.
Campbell
,
F. C.
,
2006
,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
Boston, MA
.
18.
Gupta
,
M. K.
,
Etri
,
H. E.
,
Korkmaz
,
M. E.
,
Ross
,
N. S.
,
Krolczyk
,
G. M.
,
Gawlik
,
J.
,
Yaşar
,
N.
, and
Pimenov
,
D. Y.
,
2022
, “
Tribological and Surface Morphological Characteristics of Titanium Alloys: A Review
,”
Archiv. Civ. Mech. Eng.
,
22
(
2
), p.
72
.
19.
Rugg
,
D.
,
Dixon
,
M.
, and
Burrows
,
J.
,
2016
, “
High-Temperature Application of Titanium Alloys in Gas Turbines. Material Life Cycle Opportunities and Threats—An Industrial Perspective
,”
Mater. High Temp.
,
33
(
4–5
), pp.
536
541
.
20.
Li
,
X.
,
Zhang
,
X.
,
Liu
,
Z.
,
Zhang
,
L.
,
Luo
,
L.
, and
Lai
,
S.
,
2024
, “
Improving High-Temperature Wear Resistance of Ti–6Al–4V Alloy Via Si–B–Y Co-Deposited Coatings
,”
Met. Mater. Int.
, pp.
1
16
.
21.
Bill
,
R.
,
1982
, “Review of Factors That Influence Fretting Wear,”
Materials Evaluation Under Fretting Conditions
,
S. R.
Brown
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
165
182
.
22.
Chakravarty
,
S.
,
Dyer
,
J.
,
Conway
,
J.
,
Segall
,
A.
, and
Patnaik
,
P.
,
2000
, “Influence of Surface Treatments on Fretting Fatigue of Ti-6242 at Elevated Temperatures,”
Fretting Fatigue: Current Technology and Practices
,
D. W.
Hoeppner
,
V.
Chandrasekaran
, and
C. B.
Elliott III
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
491
505
.
23.
Zhang
,
Z.
,
Li
,
Z.
,
Pan
,
S.
, and
Chai
,
X.
,
2022
, “
Enhanced Strength and High-Temperature Wear Resistance of Ti6Al4V Alloy Fabricated by Laser Solid Forming
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
111011
.
24.
Johnson
,
R. L.
, and
Bill
,
R. C.
,
1974
, “Fretting in Aircraft Turbine Engines,” NASA TM X-71606, NASA Lewis Research Center, https://ntrs.nasa.gov/citations/19750014420, Accessed September 4, 2024.
25.
Anton
,
D.
,
Lutian
,
M.
,
Favrow
,
L.
,
Logan
,
D.
, and
Annigeri
,
B.
,
2000
, “The Effects of Contact Stress and Slip Distance on Fretting Fatigue Damage in Ti-6Al-4V/17-4PH Contacts,”
Fretting Fatigue: Current Technology and Practices
,
D.W.
Hoeppner
,
V.
Chandrasekaran
,
C.B.
Elliott III
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
119
140
.
26.
Basha
,
M. M.
,
Sankar
,
M. R.
,
Murthy
,
T. S. R. C.
, and
Majumdar
,
S.
,
2024
, “
High-Temperature Tribology of Selective Laser-Melted Titanium Alloys: Role of Adhesive Wear
,”
ASME J. Tribol.
,
146
(
6
), p.
061701
.
27.
Yankov
,
R. A.
,
Kolitsch
,
A.
,
Von Borany
,
J.
,
Mücklich
,
A.
,
Munnik
,
F.
,
Donchev
,
A.
, and
Schütze
,
M.
,
2012
, “
Surface Protection of Titanium and Titanium–Aluminum Alloys Against Environmental Degradation at Elevated Temperatures
,”
Surf. Coat. Technol.
,
206
(
17
), pp.
3595
3600
.
28.
Wang
,
G.
,
Liu
,
J.
,
Yang
,
J.
,
Liu
,
S.
,
Bu
,
L.
, and
Chen
,
J.
,
2024
, “
Study of the Performance of Laser Melting Wear-Resistant Coatings on TC4 Titanium Alloy Surfaces
,”
Coatings
,
14
(
6
), p.
730
.
29.
Zhao
,
S.
,
Zhang
,
H.
,
Qi
,
X.
,
Dong
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Wear Mechanism of TC4 Titanium Alloy With TiN Coating Against Self-ubricating Fabric
,”
Coatings
,
13
(
7
), p.
1209
.
30.
Yang
,
Y.
,
Luan
,
H.
,
Tian
,
Y.
,
Si
,
L.
,
Yan
,
H.
, and
Liu
,
F.
,
2024
, “
Investigation on the Lubrication Performance of Different Carbon Nanoparticles for Titanium Alloy
,”
Industrial Lubrication and Tribology
,
76
(
7/8
), pp.
934
943
.
31.
Kumar
,
D.
,
Nadeem Akhtar
,
S.
,
Kumar Patel
,
A.
,
Ramkumar
,
J.
, and
Balani
,
K.
,
2015
, “
Tribological Performance of Laser Peened Ti–6Al–4V
,”
Wear
,
322–323
, pp.
203
217
.
32.
Attabi
,
S.
,
Mokhtari
,
M.
,
Taibi
,
Y.
,
Abdel-Rahman
,
I.
,
Hafez
,
B.
, and
Elmsellem
,
H.
,
2019
, “
Electrochemical and Tribological Behavior of Surface-Treated Titanium Alloy Ti–6Al–4V
,”
J. Bio- Tribo-Corros.
,
5
(
1
), p.
2
.
33.
Patel
,
P.
,
Jamnapara
,
N. I.
,
Zala
,
A.
, and
Kahar
,
S. D.
,
2020
, “
Investigation of Hot-Dip Aluminized Ti6Al4V Alloy Processed by Different Thermal Treatments in an Oxidizing Atmosphere
,”
Surf. Coat. Technol.
,
385
, p.
125323
.
34.
Patel
,
P.
,
Nair
,
R. B.
,
Supekar
,
R.
,
McDonald
,
A.
,
Chromik
,
R. R.
,
Moreau
,
C.
, and
Stoyanov
,
P.
,
2024
, “
Enhanced Wear Resistance of AlCoCrFeMo High Entropy Coatings (HECs) Through Various Thermal Spray Techniques
,”
Surf. Coat. Technol.
,
477
, p.
130311
.
35.
De Castilho
,
B. C. N. M.
,
Sharifi
,
N.
,
Alidokht
,
S. A.
,
Harrington
,
K.
,
Stoyanov
,
P.
,
Moreau
,
C.
, and
Chromik
,
R. R.
,
2021
, “
Short-Time Exposure Oxidation Studies on Multi-component Coatings and Their Influence on Tribological Behavior
,”
Wear
,
477
, p.
203892
.
36.
Tümer
,
D.
,
Güngörürler
,
M.
,
Havıtçıoğlu
,
H.
, and
Arman
,
Y.
,
2020
, “
Investigation of Effective Coating of the Ti–6Al–4V Alloy and 316L Stainless Steel With Graphene or Carbon Nanotubes With Finite Element Methods
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
15880
15893
.
37.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2014
,
Engineering Tribology
,
Elsevier/Butterworth-Heinemann
,
Oxford
.
38.
Holmberg
,
K.
, and
Matthews
,
A.
,
2009
,
Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering
,
Elsevier Science
,
Boston, MA
.
You do not currently have access to this content.